Journal of Materials Science

, Volume 53, Issue 13, pp 9598–9610 | Cite as

Photoactive multi-walled carbon nanotubes: synthesis and utilization of benzoin functional MWCNTs

  • Neşe Kaynak
  • Ayşen Önen
  • Müfide Karahasanoğlu
Electronic materials


This study describes a facile method for the synthesis of functionalized multi-walled carbon nanotubes (MWCNTs) carrying photoactive group. The synthesis of MWCNTs-based macro-photoinitiator was achieved by the esterification reaction between benzoin moiety and acyl chloride functional MWCNTs. Synthesized MWCNT-based photoinitiator (MWCNTs–benzoin) was used in the photopolymerization of styrene to yield polystyrene (PS)-grafted MWCNTs (MWCNTs–PS) by “grafting from” method. The efficiency of MWCNTs–benzoin photoinitiator was determined by evaluating the effect of initiator to monomer ratio and reaction period on photopolymerization of styrene. Fourier transform infrared spectroscopy, Raman and X-ray photoelectron spectroscopy analyses confirmed the covalent bonding for functionalization of MWCNTs and determined the final structures. Thermogravimetric analysis, gel permeation chromatography and UV spectroscopy were performed to evaluate the grafting efficiency of PS that covalently grafted to MWCNTs, and high efficiency of MWCNTs–benzoin as a macro-photoinitiator was also confirmed. Scanning electron microscopy was used to determine the surface morphology of functionalized MWCNTs and MWCNTs–PS.


Compliance with ethical standards

Conflict of interest

There is no conflict of interest between the authors of this manuscript.


  1. 1.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  2. 2.
    Dresselhaus MS, Dresselhaus G, Charlier JC, Hernandez E (2004) Electronic, thermal and mechanical properties of carbon nanotubes. Philos Trans A Math Phys Eng Sci 362:2065–2098CrossRefGoogle Scholar
  3. 3.
    Tang Y, Allen BL, Kauffman DR, Star A (2009) Electrocatalytic activity of nitrogen-doped carbon nanotube cups. J Am Chem Soc 131:13200–13201CrossRefGoogle Scholar
  4. 4.
    Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136CrossRefGoogle Scholar
  5. 5.
    Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis—review. J Mater Chem 21:15872–15884CrossRefGoogle Scholar
  6. 6.
    Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mater Sci Eng B119:105–118CrossRefGoogle Scholar
  7. 7.
    Lehman JH, Terrones M, Mansfield E, Hurst KE, Meunier V (2011) Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49:2581–2602CrossRefGoogle Scholar
  8. 8.
    Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC (2002) Chemistry of single-walled carbon nanotubes. Acc Chem Res 35:1105–1113CrossRefGoogle Scholar
  9. 9.
    Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401CrossRefGoogle Scholar
  10. 10.
    Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867CrossRefGoogle Scholar
  11. 11.
    Richard C, Balavoine F, Schultz P, Ebbesen TW, Mioskowski C (2003) Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 300:775–778CrossRefGoogle Scholar
  12. 12.
    Martin CR, Kohli P (2003) The emerging field of nanotube biotechnology. Nat Rev 2:29–37Google Scholar
  13. 13.
    Wepasnick K, Smith B, Bitter J, Fairbrother DH (2010) Chemical and structural characterization of carbon nanotube surfaces. Anal Bioanal Chem 396:1003–1014CrossRefGoogle Scholar
  14. 14.
    Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41:1853–1859CrossRefGoogle Scholar
  15. 15.
    Tasis D, Tagmatarchis N, Georgakilas V, Prato M (2003) Soluble carbon nanotubes. Chem Eur J 9:4000–4008CrossRefGoogle Scholar
  16. 16.
    Dyke CA, Tour JM (2003) Solvent-free functionalization of carbon nanotubes. J Am Chem Soc 125:1156–1157CrossRefGoogle Scholar
  17. 17.
    Qin Y, Liu L, Shi J, Wu W, Zhang J, Guo ZX, Yongfang L, Daoban Z (2003) Large scale preparation of solubilized carbon nanotubes. Chem Mater 15:3256–3260CrossRefGoogle Scholar
  18. 18.
    Grady BP (2010) Recent developments concerning the dispersion of carbon nanotubes in polymers. Macromol Rapid Commun 31:247–257CrossRefGoogle Scholar
  19. 19.
    Li CY, Li L, Cai W, Kodjie SL, Tenneti KK (2005) Nanohybrid shish-kebabs: periodically functionalized carbon nanotubes. Adv Mater 17:1198–1202CrossRefGoogle Scholar
  20. 20.
    Eitan A, Jiang K, Dukes D, Andrews R, Schadler LS (2003) Surface modification of multiwalled carbon nanotubes: toward the tailoring of the interface in polymer composites. Chem Mater 15:3198–3201CrossRefGoogle Scholar
  21. 21.
    Zhao B, Hu H, Haddon RC (2004) Synthesis and properties of a water-soluble single-walled carbon nanotube–poly(m-aminobenzene sulfonic acid) graft copolymer. Adv Funct Mater 14:71–76CrossRefGoogle Scholar
  22. 22.
    Peng H, Alemany LB, Margrave JL, Khabashesku VN (2003) Sidewall carboxylic acid functionalization of single-walled carbon nanotubes. J Am Chem Soc 125:15174–15182CrossRefGoogle Scholar
  23. 23.
    Rosca ID, Watari F, Uo M, Akasaka T (2005) Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 43:3124–3131CrossRefGoogle Scholar
  24. 24.
    Smith B, Wepasnick K, Schrote KE, Bertele AR, Ball WP, O’Melia C, Fairbrother DH (2009) Colloidal properties of aqueous suspensions of acid-treated, multi-walled carbon nanotubes. Environ Sci Technol 43:819–825CrossRefGoogle Scholar
  25. 25.
    Bergeret C, Cousseau J, Fernandez V, Mevellec J-Y, Lefrant S (2008) Spectroscopic evidence of carbon nanotubes’ metallic character loss induced by covalent functionalization via nitric acid purification. J Phys Chem C 112:16411–16416CrossRefGoogle Scholar
  26. 26.
    Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205CrossRefGoogle Scholar
  27. 27.
    Lingling L, Wenjun H, Jun S, Jianjun W, Chuanxiang Q, Lixing D (2014) Preparation of poly (vinyl alcohol) fibers strengthened using multiwalled carbon nanotubes functionalized with tea polyphenols. J Mater Sci 49:3322–3330. CrossRefGoogle Scholar
  28. 28.
    Gao C, Duan CV, Jin YZ, Li W, Armes SP (2005) Multihydroxy polymer-functionalized carbon nanotubes: synthesis, derivatization, and metal loading. Macromolecules 38:8634–8648CrossRefGoogle Scholar
  29. 29.
    Cheng J, Fernando KAS, Veca LM, Sun Y-P, Lamond AI, Lam YW, Cheng SH (2008) Reversible accumulation of PEGylated singlewalled carbon nanotubes in the mammalian nucleus. ACS Nano 2:2085–2094CrossRefGoogle Scholar
  30. 30.
    Khun NW, Troconis BCR, Frankel GS (2014) Effects of carbon nanotube content on adhesion strength and wear and corrosion resistance of epoxy composite coatings on AA2024-T3. Prog Org Coat 77:72–80CrossRefGoogle Scholar
  31. 31.
    Chen TK, Tien YI, Wei KH (2000) Synthesis and characterization of novel segmented polyurethane/clay nanocomposites. Polymer 41:1345–1353CrossRefGoogle Scholar
  32. 32.
    De Volder MF, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539CrossRefGoogle Scholar
  33. 33.
    Akbar S, Beyou E, Cassagnau P, Chaumont P, Farzi G (2009) Radical grafting of polyethylene onto MWCNTs: a model compound. Polymer 50:2535–2543CrossRefGoogle Scholar
  34. 34.
    Pramanik NB, Singha NK (2015) Direct functionalization of multi-walled carbon nanotubes (MWCNTs) via grafting of poly(furfuryl methacrylate) using Diels–Alder “click chemistry” and its thermoreversibility. RSC Adv 5:94321–94327CrossRefGoogle Scholar
  35. 35.
    Yang C, Guenzi M, Cicogna F, Gambarotti C, Filippone G, Pinzino C, Passaglia E, Dintcheva NT et al (2016) Grafting of polymer chains on the surface of carbon nanotubes via nitroxide radical coupling reaction. Polymer 65:48–56Google Scholar
  36. 36.
    Ernould B, Bertrand O, Minoia A, Lazzaroni R, Vlad A, Gohy JF (2017) Electroactive polymer/carbon nanotube hybrid materials for energy storage synthesized via a “grafting to” approach. RSC Adv 7:17301–17310CrossRefGoogle Scholar
  37. 37.
    Xu Y, Gao C, Kong H, Yan D, Jin YZ, Watts PCP (2004) Growing multihydroxyl hyperbranched polymers on the surfaces of carbon nanotubes by in situ ring-opening polymerization. Macromolecules 37:8846–8853CrossRefGoogle Scholar
  38. 38.
    Luo Y-L, Bai R-X, Xu F, Chen Y-S, Li H, Dai S-S, Ma W-B (2016) Novel multiwalled carbon nanotube grafted with polyethylene glycol-block-polystyrene nanohybrids: ATRP synthesis and detection of benzene vapor. J Mater Sci 51:1363–1375. CrossRefGoogle Scholar
  39. 39.
    Baskaran D, Mays JW, Bratcher MS (2004) Polymer-grafted multiwalled carbon nanotubes through surface-initiated polymerization. Angew Chem Int Ed 43:2138–2142CrossRefGoogle Scholar
  40. 40.
    Liu Y, Adronov A (2004) Preparation and utilization of catalyst-functionalized single-walled carbon nanotubes for ring-opening metathesis polymerization. Macromolecules 37:4755–4760CrossRefGoogle Scholar
  41. 41.
    Qu L, Veca LM, Lin Y, Kitaygorodskiy A, Chen B, McCall AM, Connell JW, Sun YP (2005) Soluble nylon-functionalized carbon nanotubes from anionic ring-opening polymerization from nanotube surface. Macromolecules 38:10328–10331CrossRefGoogle Scholar
  42. 42.
    Plambeck L Jr (1956) Photographic preparation of relief images. US Patent 2760863Google Scholar
  43. 43.
    Esen DS, Arsu N, Silva JP, Jockusch S, Turro NJ (2013) Benzoin type photoinitiator for free radical polymerization. J Polym Sci Polym Chem 51:1865–1871CrossRefGoogle Scholar
  44. 44.
    Frick E, Schweigert C, Noble BB, Ernst HA, Lauer A, Liang Y, Dominik V, Coote ML et al (2016) Toward a quantitative description of radical photoinitiator structure–reactivity correlations. Macromolecules 49:80–89CrossRefGoogle Scholar
  45. 45.
    Yağcı Y, Önen A, Schnabel W (1991) Block copolymers by combination of radical and promoted cationic polymerization routes. Macromolecules 24:4620–4623CrossRefGoogle Scholar
  46. 46.
    Fu K, Huang W, Lin Y, Riddle LA, Carroll DL, Sun YP (2001) Defunctionalization of functionalized carbon nanotubes. Nano Lett 8:439–441CrossRefGoogle Scholar
  47. 47.
    Tucureanu V, Matei A, Avram AM (2016) FTIR spectroscopy for carbon family study. Crit Rev Anal Chem 46:502–520CrossRefGoogle Scholar
  48. 48.
    Ma PC, Kim JK (2011) Carbon nanotubes for polymer reinforcement. CRC Press, Boca RatonGoogle Scholar
  49. 49.
    Jorio A, Pimenta MA, Filho AGS, Saito R, Dresselhaus G, Dresselhaus MS (2003) Characterizing carbon nanotube samples with resonance raman scattering. New J Phys 139:1–17Google Scholar
  50. 50.
    Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C et al (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833–840CrossRefGoogle Scholar
  51. 51.
    Zhaoa Z, Yanga Z, Huc Y, Li J, Fana X (2013) Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups. Appl Surf Sci 276:476–481CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Polymer Science and TechnologyIstanbul Technical UniversityMaslak, IstanbulTurkey
  2. 2.Department of ChemistryIstanbul Technical UniversityMaslak, IstanbulTurkey

Personalised recommendations