Skip to main content

Advertisement

Log in

Electric field–temperature phase diagram of sodium bismuth titanate-based relaxor ferroelectrics

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electric field–temperature phase diagrams of three bismuth sodium titanate-based relaxor ferroelectrics are reported, namely 0.94(Na1/2Bi1/2TiO3)–0.06(BaTiO3), 0.80(Na1/2Bi1/2TiO3)–0.20(K1/2Bi1/2TiO3) and 0.75(Na1/2Bi1/2TiO3)–0.25(SrTiO3). Relaxor behavior is demonstrated by temperature-dependent dielectric permittivity measurements in the unpoled and poled states, as well as by the field-induced phase transition into a ferroelectric phase from the relaxor phase. From temperature-dependent thermometry measurements, we identified the threshold electric field to induce the ferroelectric phase and obtained the released latent heat of the phase transition. We determined the nonergodic and ergodic relaxor phase temperature range based on the absence or presence of reversibility of the relaxor to ferroelectric transition. For all three compositions, the electric field–temperature phase diagram was constructed and a critical point was identified. The constructed electric field–temperature phase diagrams are useful to find optimum operational ranges of ferroelectrics and relaxors for electromechanical and electrocaloric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Rödel J, Jo W, Seifert KTP, Anton E-M, Granzow T, Damjanovic D (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92(6):1153–1177. https://doi.org/10.1111/j.1551-2916.2009.03061.x

    Article  Google Scholar 

  2. Jo W, Dittmer R, Acosta M, Zang J, Groh C, Sapper E, Wang K, Rödel J (2012) Giant electric-field-induced strains in lead-free ceramics for actuator applications—status and perspective. J Electroceram 29(1):71–93. https://doi.org/10.1007/s10832-012-9742-3

    Article  Google Scholar 

  3. Rödel J, Webber KG, Dittmer R, Jo W, Kimura M, Damjanovic D (2015) Transferring lead-free piezoelectric ceramics into application. J Eur Ceram Soc 35(6):1659–1681. https://doi.org/10.1016/j.jeurceramsoc.2014.12.013

    Article  Google Scholar 

  4. Hussain A, Ahn CW, Lee JS, Ullah A, Kim IW (2010) Large electric-field-induced strain in Zr-modified lead-free Bi0.5(Na0.78K0.22)0.5TiO3 piezoelectric ceramics. Sens Actuators A 158(1):84–89. https://doi.org/10.1016/j.sna.2009.12.027

    Article  Google Scholar 

  5. Ye Z-G, Schmid H (1993) Optical, dielectric and polarization studies of the electric field-induced phase transition in Pb(Mg1/3Nb2/3)O3 [PMN]. Ferroelectrics 145(1):83–108. https://doi.org/10.1080/00150199308222438

    Article  Google Scholar 

  6. Bobnar V, Kutnjak Z, Pirc R, Levstik A (1999) Electric-field–temperature phase diagram of the relaxor ferroelectric lanthanum-modified lead zirconate titanate. Phys Rev B 60(9):6420–6427

    Article  Google Scholar 

  7. Ehara Y, Novak N, Ayrikyan A, Geiger PT, Webber KG (2016) Phase transformation induced by electric field and mechanical stress in Mn-doped (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 ceramics. J Appl Phys 120(17):1–7. https://doi.org/10.1063/1.4966614

    Article  Google Scholar 

  8. Jo W, Granzow T, Aulbach E, Rödel J, Damjanovic D (2009) Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoceramics. J Appl Phys 105(9):1–5. https://doi.org/10.1063/1.3121203

    Article  Google Scholar 

  9. Ye Z-G (1996) Relaxor ferroelectric Pb(Mg1/3Nb2/3)O3: properties and present understanding. Ferroelectrics 184(1):193–208. https://doi.org/10.1080/00150199608230260

    Article  Google Scholar 

  10. Novak N, Pirc R, Wencka M, Kutnjak Z (2012) High-resolution calorimetric study of Pb(Mg1/3Nb2/3)O3 single crystal. Phys Rev Lett 109(3):1–5. https://doi.org/10.1103/PhysRevLett.109.037601

    Article  Google Scholar 

  11. Kutnjak Z, Petzelt J, Blinc R (2006) The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 441(7096):956–959. https://doi.org/10.1038/nature04854

    Article  Google Scholar 

  12. Weyland F, Acosta M, Koruza J, Breckner P, Rödel J, Novak N (2016) Criticality: concept to enhance the piezoelectric and electrocaloric properties of ferroelectrics. Adv Func Mater 26(40):7326–7333. https://doi.org/10.1002/adfm.201602368

    Article  Google Scholar 

  13. Porta M, Lookman T, Saxena A (2010) Effects of criticality and disorder on piezoelectric properties of ferroelectrics. J Phys Condens Matter 22(34):1–14. https://doi.org/10.1088/0953-8984/22/34/345902

    Article  Google Scholar 

  14. Rožič B, Kosec M, Uršič H, Holc J, Malič B, Zhang QM, Blinc R, Pirc R, Kutnjak Z (2011) Influence of the critical point on the electrocaloric response of relaxor ferroelectrics. J Appl Phys 110(6):1–5. https://doi.org/10.1063/1.3641975

    Google Scholar 

  15. Liu Y, Scott JF, Dkhil B (2016) Direct and indirect measurements on electrocaloric effect: recent developments and perspectives. Appl Phys Rev 3(3):1–18. https://doi.org/10.1063/1.4958327

    Article  Google Scholar 

  16. Park S-E, Hong KS (1997) Variations of structure and dielectric properties on substituting A-site cations for Sr2+ in (Na1/2Bi1/2)TiO3. J Mater Res 12(8):2152–2157

    Article  Google Scholar 

  17. Hiruma Y, Imai Y, Watanabe Y, Nagata H, Takenaka T (2008) Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3–SrTiO3 ferroelectric ceramics. Appl Phys Lett 92(26):1–3. https://doi.org/10.1063/1.2955533

    Article  Google Scholar 

  18. Sapper E, Novak N, Jo W, Granzow T, Rödel J (2014) Electric-field–temperature phase diagram of the ferroelectric relaxor system (1 − x)Bi1/2Na1/2TiO3 − xBaTiO3 doped with manganese. J Appl Phys 115(19):1–7. https://doi.org/10.1063/1.4876746

    Article  Google Scholar 

  19. Ehara Y, Novak N, Yasui S, Itoh M, Webber KG (2015) Electric-field-temperature phase diagram of Mn-doped Bi0.5(Na0.9K0.1)0.5TiO3 ceramics. Appl Phys Lett 107(26):1–5. https://doi.org/10.1063/1.4938759

    Article  Google Scholar 

  20. Acosta M, Jo W, Rödel J (2014) Temperature- and frequency-dependent properties of the 0.75Bi1/2Na1/2TiO3–0.25SrTiO3lead-free incipient piezoceramic. J Am Ceram Soc 97(6):1937–1943. https://doi.org/10.1111/jace.12884

    Article  Google Scholar 

  21. Kutnjak Z, Rožič B, Pirc R (2015) Electrocaloric effect: theory, measurements, and applications. Wiley encyclopedia of electrical and electronics engineering. Wiley, Hoboken

    Google Scholar 

  22. Samara GA, Venturini EL (2006) Ferroelectric/relaxor crossover in compositionally disordered perovskites. Phase Transit 79(1–2):21–40. https://doi.org/10.1080/01411590500418331

    Article  Google Scholar 

  23. Jo W, Schaab S, Sapper E, Schmitt LA, Kleebe H-J, Bell AJ, Rödel J (2011) On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3–6 mol% BaTiO3. J Appl Phys 110(7):1–9. https://doi.org/10.1063/1.3645054

    Article  Google Scholar 

  24. Ma C, Tan X (2010) Phase diagram of unpoled lead-free—ceramics. Solid State Commun 150(33–34):1497–1500. https://doi.org/10.1016/j.ssc.2010.06.006

    Article  Google Scholar 

  25. Jo W, Daniels J, Damjanovic D, Kleemann W, Rödel J (2013) Two-stage processes of electrically induced-ferroelectric to relaxor transition in 0.94(Bi1/2Na1/2)TiO3–0.06BaTiO3. Appl Phys Lett 102(19):1–4. https://doi.org/10.1063/1.4805360

    Article  Google Scholar 

  26. Anjali K, Ajithkumar TG, Joy PA (2015) Correlations between structure, microstructure, density and dielectric properties of the lead-free ferroelectrics Bi0.5(Na, K)0.5TiO3. J Adv Dielectr 05(04):1550028. https://doi.org/10.1142/s2010135x15500289

    Article  Google Scholar 

  27. Sasaki A, Chiba T, Mamiya Y, Otsuki E (1999) Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 Systems. Jpn J Appl Phys 38:5564–5567

    Article  Google Scholar 

  28. Novak N, Pirc R, Kutnjak Z (2013) Diffuse critical point in PLZT ceramics. EPL 102(1):1–5. https://doi.org/10.1209/0295-5075/102/17003

    Article  Google Scholar 

  29. Sullivan PF, Seidel G (1968) Steady-state, ac-temperature calorimetry. Phys Rev 173(3):679–685

    Article  Google Scholar 

  30. Peräntie J, Hagberg J, Uusimäki A, Jantunen H (2009) Field-induced thermal response and irreversible phase transition enthalpy change in Pb(Mg1/3Nb2/3)O3–PbTiO3. Appl Phys Lett 94(10):1–3. https://doi.org/10.1063/1.3098067

    Article  Google Scholar 

Download references

Acknowledgements

This work was financed by the Deutsche Forschungsgemeinschaft (DFG) under the SPP 1599, Project No. 1221/2-1. Malte Vögler acknowledges support under the DFG Grant No. RO954/25.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola Novak.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weyland, F., Acosta, M., Vögler, M. et al. Electric field–temperature phase diagram of sodium bismuth titanate-based relaxor ferroelectrics. J Mater Sci 53, 9393–9400 (2018). https://doi.org/10.1007/s10853-018-2232-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2232-5

Keywords

Navigation