Skip to main content
Log in

Synthesis, characterization and evaluation of resin-based carbon spheres modified by oxygen functional groups for gaseous elemental mercury capture

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel resin-based spherical carbon material was successfully prepared by suspension polymerization of alkyl phenol and formaldehyde and steam activation in combination with surface modification by heat treatment with dry air for enhancing Hg0 adsorption. The analysis results demonstrate that the oxidation-modified activated carbon spheres possess better mercury removal performance than untreated sorbents, and the ACS-O300 obtained by oxidation modified at 300 °C is the optimal sorbent at the adsorption temperature range from 25 to 150 °C. The main reason is assigned to the increase of the oxygen functional groups of C=O and C(O)–O–C that play an important role as effective active sites for binding the Hg0, even though the C(O)–O–C predominates in mercury removal performance under higher adsorption temperature. The optimum O2 concentration is 4 vol% at the O2 concentration range from 0 to 8 vol%. SO2 and NO are favorable to the mercury adsorption under 4 vol% O2, while H2O leads to the inhibition of the mercury adsorption. The TPD results suggest that a strong desorption peak at temperature around 235 °C and a weak peak at 324 °C should generate from mercury desorption of C = O and C(O)–O–C, correspondingly. Moreover, the XPS analysis results of the fresh and used sorbent indicates that the C=O and C(O)–O–C serve as strong oxidizer and facilitate electron transfer for converting Hg0 to Hg2+ in the chemisorption process. These results suggest that the obtained resin-based spherical porous carbon (ACS-O300) is promising for Hg0 capture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Liu QY, Liu ZY (2013) Carbon supported vanadia for multi-pollutants removal from flue gas. Fuel 108:149–158

    Article  Google Scholar 

  2. Gaffney JS, Marley N (2014) In-depth review of atmospheric mercury: sources, transformations, and potential sinks. Inter J Nanomed 9:1883–1889

    Google Scholar 

  3. Iyyanki V, Muralikrishna VM (2017) Air pollution control technologies. In: Environmental management, Elsevier, India, pp 337–397

  4. Li YT, Yi HH, Tang XL et al (2016) Study on the performance of simultaneous desulfurization and denitrification of Fe3O4–TiO2 composites. Chem Eng J 304:89–97

    Article  Google Scholar 

  5. Tang L, Nagashima KT, Hasegawa K et al (2015) Development of human health damage factors for PM2.5 based on a global chemical transport model. Int J Life Cycle Assess 1–11

  6. Wang SX, Zhang L, Zhao B et al (2012) Mitigation potential of mercury emission form coal-fired power plants in China. Energy Fuels 26:4635–4642

    Article  Google Scholar 

  7. Xu HM, Qu Z, Huang WJ et al (2015) Regenerable Ag/graphene sorbent for elemental mercury capture at ambient temperature. Colloid Surf A 476:83–89

    Article  Google Scholar 

  8. Liu YX, Wang Q, Pan JF et al (2015) A study on removal of elemental mercury in flue gas using fenton solution. J Hazard Mater 292:164–172

    Article  Google Scholar 

  9. Wang FY, Wang SX, Zhang L et al (2016) Characteristics of mercury cycling in the cement production process. J Hazard Mater 302:27–35

    Article  Google Scholar 

  10. Zhao B, Yi HH, Tang XL et al (2016) Copper modified activated coke for mercury removal from coal-fired flue gas. Chem Eng J 286:585–593

    Article  Google Scholar 

  11. Driscoll CT, Mason RP, Chan HM et al (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47:4967–4983

    Article  Google Scholar 

  12. Pirrone N, Cinnirella S, Feng X et al (2010) Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys 10:5951–5964

    Article  Google Scholar 

  13. Li GL, Shen BX, Wang SJ et al (2015) Comparative study of elemental mercury removal by three bio-chars from various solid wastes. Fuel 145:189–195

    Article  Google Scholar 

  14. Zhang YS, Duan W, Liu Z et al (2014) Effects of modified fly ash on mercury adsorption ability in an entrained-flow reactor. Fuel 128:274–280

    Article  Google Scholar 

  15. Zhao Y, Hao L, Zhang P et al (2014) An integrative process for Hg0 removal using vaporized H2O2/Na2S2O8. Fuel 13:113–121

    Article  Google Scholar 

  16. Wu H, Liu H, Wang QH et al (2013) Experimental study of homogeneous mercury oxidation under O2/CO2 atmosphere. Proc Combust Inst 34:2847–2854

    Article  Google Scholar 

  17. Li GL, Shen BX, Li BX et al (2015) Elemental mercury removal using biochar pyrolyzed from municipal solid waste. Fuel Process Technol 133:43–50

    Article  Google Scholar 

  18. Ochoa-Gonzalez R, Diaz-Somoano M, Martinez-Tarazona MR (2013) The capture of oxidized mercury from simulated desulphurization aqueous solutions. J Environ Manag 120:55–60

    Article  Google Scholar 

  19. He C, Shen BX, Chen JH et al (2014) Adsorption and oxidation of elemental mercury over Ce–MnOx/Ti-PILCs. Environ Sci Technol 48:7891–7898

    Article  Google Scholar 

  20. Xing L, Xu Y, Zhong Q (2012) Mn and Fe modified fly ash as a superior catalyst for elemental mercury capture under air conditions. Energy Fuels 26:4903–4909

    Article  Google Scholar 

  21. Zhou Q, Duan YF, Hong YG et al (2015) Experimental and kinetic studies of gas-phase mercury adsorption by raw and bromine modified activated carbon. Fuel Process Technol 134:325–332

    Article  Google Scholar 

  22. Xu WQ, Wang HR, Zhu TY et al (2013) Mercury removal from coal combustion flue gas by modified fly ash. J Environ Sci 25:393–398

    Article  Google Scholar 

  23. McLarnon CR, Granite EJ, Pennline HW (2005) The PCO process for photochemical removal of mercury from flue gas. Fuel Process Technol 87:85–89

    Article  Google Scholar 

  24. Zhang Bi XuP, Qiu Y et al (2015) Increasing oxygen functional groups of activated carbon with non-thermal plasma to enhance mercury removal efficiency for flue gases. Chem Eng J 263:1–8

    Article  Google Scholar 

  25. Wang JC, Zhang YP, Han L et al (2013) Simultaneous removal of hydrogen sulfide and mercury from simulated syngas by iron-based sorbents. Fuel 103:73–79

    Article  Google Scholar 

  26. Shen BX, Tian LH, Li FK et al (2017) Elemental mercury removal by the modified bio-char from waste tea. Fuel 272:28–37

    Google Scholar 

  27. Pavlish JH, Hamre LL, Zhuang Y (2010) Mercury control technologies for coal combustion and gasification systems. Fuel 89:838–847

    Article  Google Scholar 

  28. Jun Z, Duan YF, Zhou Q et al (2016) Adsorptive removal of gas-phase mercury by oxygen non-thermal plasma modified activated carbon. Chem Eng J 294:281–289

    Article  Google Scholar 

  29. Zheng Y, Jensen AD, Windelin C et al (2012) Review of technologies for mercury removal from flue gas from cement production processes. Prog Energy Combust Sci 38:599–629

    Article  Google Scholar 

  30. Presto AA, Granite EJ (2006) Survey of catalysts for oxidation of mercury in flue gas. Environ Sci Technol 40:5601–5609

    Article  Google Scholar 

  31. Johnson NC, Manchester S, Sarin L et al (2008) Mercury vapor release from broken compact fluorescent lamps and in situ capture by new nanomaterial sorbents. Environ Sci Technol 42:5772–5778

    Article  Google Scholar 

  32. Saha A, Abram DN, Kuh KP et al (2013) CeO2–TiO2 sorbents for the removal of elemental mercury from syngas. Environ Sci Technol 47:13695–13701

    Article  Google Scholar 

  33. Lee SJ, Seo Y, Lee TG (2004) Removal of gas-phase elemental mercury by iodine and chlorine-impregnated activated carbons. Atmos Environ 38:4887–4893

    Article  Google Scholar 

  34. Mullett M, Pendleto P, Badalyan A (2012) Removal of elemental mercury from Bayer stack gases using sulfur-impregnated activated carbons. Chem Eng J 211:133–142

    Article  Google Scholar 

  35. Ghorishi SB, Keeney RM, Serre SD et al (2002) Development of a Cl-impregnated activated carbon for entrained-flow capture of elemental mercury. Environ Sci Technol 36:4454–4459

    Article  Google Scholar 

  36. Gao Y, Külaots I, Chen X et al (2001) Ozonation for the chemical modification of carbon surfaces in fly ash. Fuel 80:765–768

    Article  Google Scholar 

  37. Chen X, Farber M, Gao Y et al (2003) Mechanisms of surfactant adsorption on non-polar, air-oxidized and ozone-treated carbon surfaces. Carbon 41:1489–1500

    Article  Google Scholar 

  38. Manchester S, Wang XL, Kulaots I et al (2008) High capacity mercury adsorption on freshly ozone-treated carbon surfaces. Carbon 46:518–524

    Article  Google Scholar 

  39. Skodras G, Diamantopoulou I, Sakellaropoulos GP (2007) Role of activated carbon structural properties and surface chemistry in mercury adsorption. Desalination 210:281–286

    Article  Google Scholar 

  40. Li YH, Lee CW, Gullett BK (2003) Importance of activated carbon’s oxygen surface functional groups on elemental mercury adsorption. Fuel 82:451–457

    Article  Google Scholar 

  41. Liu J, Cheney MA, Wu F et al (2011) Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces. J Hazard Mater 186:108–113

    Article  Google Scholar 

  42. Zhang CM, Xie LJ, Song W et al (2013) CO2 Capture with activated carbon grafted by nitrogenous functional groups. Energy Fuels 27:4818–4823

    Article  Google Scholar 

  43. Ludwinowicz J, Jaroniec M (2015) Potassium salt-assisted synthesis of highly microporous carbon spheres for CO2 adsorption. Carbon 82:297–303

    Article  Google Scholar 

  44. Zhang CM, Song W, Sun GH et al (2014) Synthesis, characterization, and evaluation of activated carbon spheres for removal of dibenzothiophene from model diesel fuel. Ind Eng Chem 53:4271–4276

    Article  Google Scholar 

  45. Romero-Anaya AJ, Ouzzine M, Lillo-Ródenas MA et al (2014) Spherical carbons: synthesis, characterization and activation processes. Carbon 68:296–307

    Article  Google Scholar 

  46. Zhao S, Qu Z, Yan N et al (2015) Co-benefit of Ag and Mo for the catalytic oxidation of elemental mercury. Fuel 158:891–897

    Article  Google Scholar 

  47. Zhao S, Xu HM, Mei J et al (2017) Ag–Mo modified SCR catalyst for a co-beneficial oxidation of elemental mercury at wide temperature range. Fuel 200:236–243

    Article  Google Scholar 

  48. Boyano A, Gálvez ME, LázaroFan MJ et al (2006) Characterization and kinetic study of carbon-based briquettes for the reduction of NO. Carbon 44:2399–2403

    Article  Google Scholar 

  49. Shafeeyan MS, Daud WMAW, Houshmand A et al (2011) Ammonia modification of activated carbon to enhance carbon dioxide adsorption: effect of pre-oxidation. Appl Surf Sci 257:3936–3942

    Article  Google Scholar 

  50. Fu KF, Yue QY, Gao BY et al (2013) Preparation, characterization and application of lignin-based activated carbon from black liquor lignin by steam activation. Chem Eng J 228:1074–1082

    Article  Google Scholar 

  51. Aranda A, Murillo R, Garcia T et al (2012) Simulation and optimization of tyre-based steam activated carbons production for gas-phase polycyclic aromatic hydrocarbons abatement. Chem Eng J 187:123–132

    Article  Google Scholar 

  52. Bertrana X, Chollona G, Dentzer J et al (2017) Oxidation behavior at moderate temperature under dry and wet air of phenolic resin-derived carbon. Thermochi acta 649:13–21

    Article  Google Scholar 

  53. Walker PL Jr, Taylor RL, Ranish JM (1991) An update on the carbon–oxygen reaction. Carbon 29:411–421

    Article  Google Scholar 

  54. Terzyk AP (2001) The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro: Part II. TG, FTIR, and XPS analysis of carbons and the temperature dependence of adsorption kinetics at the neutral pH. Colloids Surf A 177:23–45

    Article  Google Scholar 

  55. Sharma RK, Wooten JB, Baliga VL et al (2004) Characterization of chars from pyrolysis of lignin. Fuel 83:1469–1482

    Article  Google Scholar 

  56. Levi G, Senneca O, Causà M et al (2015) Probing the chemical nature of surface oxides during coal char oxidation by high-resolution XPS. Carbon 90:181–196

    Article  Google Scholar 

  57. Tan Z, Qiu J, Zeng H et al (2015) Removal of elemental mercury by bamboo charcoal impregnated with H2O2. Fuel 90:1471–1475

    Article  Google Scholar 

  58. Tan Z, Sun L, Xiang J et al (2012) Gas-phase elemental mercury removal by novel carbon-based sorbents. Carbon 50:362–371

    Article  Google Scholar 

  59. Moreno-Castilla C, Carrasco-Martin F, Maldonado-Hodar FJ et al (1998) Effects of non-oxidant and oxidant acid treatments on the surface properties of an activated carbon with very low ash content. Carbon 36:145–151

    Article  Google Scholar 

  60. Shen BX, Li GL, Wang FM et al (2015) Elemental mercury removal by the modified bio-char from medicinal residues. Chem Eng J 272:28–37

    Article  Google Scholar 

  61. Zhou ZJ, Liu XW, Zhao B et al (2016) Elemental mercury oxidation over manganese-based perovskite-type catalyst at low temperature. Chem Eng J 288:701–710

    Article  Google Scholar 

  62. Olson ES, Miller SJ, Sharma RK et al (2000) Catalytic effects of carbon sorbents for mercury capture. J Hazard Mater 74:61–79

    Article  Google Scholar 

  63. Liu J, Qu W, Joo SW et al (2012) Effect of SO2 on mercury binding on carbonaceous surfaces. Chem Eng J 184:163–167

    Article  Google Scholar 

  64. Li H, Wu CY, Li Y et al (2011) CeO2–TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas. Environ Sci Technol 45:7394–7400

    Article  Google Scholar 

  65. Ochiai R, Uddin MA, Sasaoka E et al (2009) Effects of HCl and SO2 concentration on mercury removal by activated carbon sorbents in coal-derived flue gas. Energy Fuels 23:4734–4739

    Article  Google Scholar 

  66. Hsi HC, Chen CT (2012) Influences of acidic/oxidizing gases on elemental mercury adsorption equilibrium and kinetics of sulfur-impregnated activated carbon. Fuel 98:229–235

    Article  Google Scholar 

  67. Li Y, Wu CY (2006) Role of moisture in adsorption, photocatalytic oxidation, and reemission of elemental mercury on a SiO2–TiO2 nanocomposite. Environ Sci Technol 40:6444–6448

    Article  Google Scholar 

  68. Li YH, Lee CW, Gullett BK (2002) The effect of activated carbon surface moisture on low temperature mercury adsorption. Carbon 40:65–72

    Article  Google Scholar 

  69. Hutson ND, Attwood BC, Scheckel KG (2007) XAS and XPS characterization of mercury binding on brominated activated carbon. Environ Sci Technol 41:1747–1752

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by National Nature Science Foundation of China (Nos. 51002166, 51172251 and 51061130536), National Science Foundation of China for Youths (Nos. 51402324 and 21706179), National Science Foundation of ShanXi for Youths (Nos. 2015021107 and 201701D221037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changming Zhang or Songjian Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 950 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Song, W., Zhang, X. et al. Synthesis, characterization and evaluation of resin-based carbon spheres modified by oxygen functional groups for gaseous elemental mercury capture. J Mater Sci 53, 9429–9448 (2018). https://doi.org/10.1007/s10853-018-2231-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2231-6

Keywords

Navigation