Advertisement

Journal of Materials Science

, Volume 53, Issue 13, pp 9504–9520 | Cite as

Fast and facile graphene oxide grafting on hydrophobic polyamide fabric via electrophoretic deposition route

  • Hongtao Zhao
  • Mingwei Tian
  • Yunna Hao
  • Lijun Qu
  • Shifeng Zhu
  • Shaojuan Chen
Composites
  • 525 Downloads

Abstract

Fabric surface coating is deemed as the major route to fabricate functional fabrics, and interface stability is a critical factor affecting the performance of fabric. Here, electrophoretic deposition (EPD) is employed for fast and facile modification of hydrophobic polyamide fabric with graphene oxide (GO) nanosheets embedded in polymeric networks. For better grafting, polyethyleneimine is utilized to modify the surface of the fabric substrate, endowing more polar groups and resulting in reasonable interface properties of graphene oxide and fabric substrate. GO nanosheets are uniformly deposited on modified fabric via EPD method and then reduced by green hot-press processing. The modified fabric shows excellent electrical conductivity (electrical conductivity > 3.3 S/m), thermal conductivity (0.521 W/m·K), and UV protection performance (UPF > 500, UVA < 0.2%). Meanwhile, the contact angle test of fabric reveals that the addition of graphene significantly improved the hydrophobicity of the fabric.

Notes

Acknowledgements

Financial support of this work was provided by Natural Science Foundation of China via Grant No. 51672141 and 51306095, China Postdoctoral Science Foundation via Grant No. 2014M561887 and 2015T80697, Shandong Province college science and technology Plan Project (J17KA030), Qingdao Postdoctoral Application Research Funded Project and Qingdao Application Basic Research Funded Project.

References

  1. 1.
    Tian M, Tang X, Qu L, Zhu S, Guo X, Han G (2015) Robust ultraviolet blocking cotton fabric modified with chitosan/graphene nanocomposites. Mater Lett 145:340–343CrossRefGoogle Scholar
  2. 2.
    Tian M, Hu X, Qu L, Zhu S, Sun Y, Han G (2016) Versatile and ductile cotton fabric achieved via layer-by-layer self-assembly by consecutive adsorption of graphene doped PEDOT: PSS and chitosan. Carbon 96:1166–1174CrossRefGoogle Scholar
  3. 3.
    Tian M, Du M, Qu L, Zhang K, Li H, Zhu S et al (2016) Conductive reduced graphene oxide/MnO2 carbonized cotton fabrics with enhanced electro -chemical, -heating, and -mechanical properties. J Power Sources 326:428–437CrossRefGoogle Scholar
  4. 4.
    Ren J, Wang C, Zhang X, Carey T, Chen K, Yin Y et al (2017) Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon 111:622–630CrossRefGoogle Scholar
  5. 5.
    Corni I, Ryan MP, Boccaccini AR (2008) Electrophoretic deposition: from traditional ceramics to nanotechnology. J Eur Ceram Soc 28(7):1353–1367CrossRefGoogle Scholar
  6. 6.
    Besra L, Liu M (2007) Prog Mater Sci 52(1):1–61CrossRefGoogle Scholar
  7. 7.
    Sato N, Kawachi M, Noto K, Yoshimoto N, Yoshizawa M (2001) Effect of particle size reduction on crack formation in electrophoretically deposited YBCO films. Phys C 357:1019–1022CrossRefGoogle Scholar
  8. 8.
    Kumar N, Yu YC, Lu YH et al (2015) Fabrication of carbon nanotube/cobalt oxide nanocomposites via electrophoretic deposition for supercapacitor electrodes. J Mater Sci 51(5):2320–2329.  https://doi.org/10.1007/s10853-015-9540-9 CrossRefGoogle Scholar
  9. 9.
    Ghasemi S, Jafari M, Ahmadi F (2016) Cu2O-Cu(OH)(2)-graphene nanohybrid as new capacitive material for high performance supercapacitor. Electrochim Acta 210:225–235CrossRefGoogle Scholar
  10. 10.
    Wang M, Duong LD, Nguyen Thi M, Kim S, Kim Y, Seo H et al (2015) All-solid-state reduced graphene oxide supercapacitor with large volumetric capacitance and ultralong stability prepared by electrophoretic deposition method. ACS Appl Mater Interfaces 7(2):1348–1354CrossRefGoogle Scholar
  11. 11.
    Ghasemi S, Ahmadi F (2015) Effect of surfactant on the electrochemical performance of graphene/iron oxide electrode for supercapacitor. J Power Sources 289:129–137CrossRefGoogle Scholar
  12. 12.
    Kim S, Oh J-S, Kim M-G, Jang W, Wang M, Kim Y et al (2014) Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition. ACS Appl Mater Interfaces 6(20):17647–17653CrossRefGoogle Scholar
  13. 13.
    Wang M, Le Dai D, Oh J-S, Nguyen Thi M, Kim S, Hong S et al (2014) Large-area, conductive and flexible reduced graphene oxide (RGO) membrane fabricated by electrophoretic deposition (EPD). ACS Appl Mater Interfaces 6(3):1747–1753CrossRefGoogle Scholar
  14. 14.
    Hamadanian M, Zolfaghari AR (2012) Modified multistep electrophoretic deposition of TiO2 nanoparticles to prepare high quality thin films for dye-sensitized solar cell. J Mater Sci 47(15):5845–5851.  https://doi.org/10.1007/s10853-012-6484-1 CrossRefGoogle Scholar
  15. 15.
    Luan X, Chen L, Zhang J, Qu G, Flake JC, Wang Y (2013) Electrophoretic deposition of reduced graphene oxide nanosheets on TiO2 nanotube arrays for dye-sensitized solar cells. Electrochim Acta 111:216–222CrossRefGoogle Scholar
  16. 16.
    Kollath VO, Chen Q, Mullens S et al (2016) Electrophoretic deposition of hydroxyapatite and hydroxyapatite–alginate on rapid prototyped 3D Ti6Al4V scaffolds. J Mater Sci 51(5):2338–2346.  https://doi.org/10.1007/s10853-015-9543-6 CrossRefGoogle Scholar
  17. 17.
    Jankovic A, Erakovic S, Mitric M, Matic IZ, Juranic ZD, Tsui GCP et al (2015) Bioactive hydroxyapatite/graphene composite coating and its corrosion stability in simulated body fluid. J Alloy Compd 624:148–157CrossRefGoogle Scholar
  18. 18.
    Jankovic A, Erakovic S, Vukasinovic-Sekulic M, Miskovic-Stankovic V, Park SJ, Rhee KY (2015) Graphene-based antibacterial composite coatings electrodeposited on titanium for biomedical applications. Prog Org Coat 83:1–10CrossRefGoogle Scholar
  19. 19.
    Maaoui H, Singh SK, Teodorescu F, Coffinier Y, Barras A, Chtourou R et al (2017) Copper oxide supported on three-dimensional ammonia-doped porous reduced graphene oxide prepared through electrophoretic deposition for non-enzymatic glucose sensing. Electrochim Acta 224:346–354CrossRefGoogle Scholar
  20. 20.
    Belkhalfa H, Teodorescu F, Queniat G, Coffinier Y, Dokhan N, Sam S et al (2016) Insulin impregnated reduced graphene oxide/Ni(OH)(2) thin films for electrochemical insulin release and glucose sensing. Sens Actuators B-Chem 237:693–701CrossRefGoogle Scholar
  21. 21.
    He L, Wang Q, Mandler D, Li M, Boukherroub R, Szunerits S (2016) Detection of folic acid protein in human serum using reduced graphene oxide electrodes modified by folic-acid. Biosens Bioelectron 75:389–395CrossRefGoogle Scholar
  22. 22.
    Chen L, He H, Lei D, Menggen Q, Hu L, Yang D (2013) Field emission performance enhancement of Au nanoparticles doped graphene emitters. Appl Phys Lett 103(23):233105CrossRefGoogle Scholar
  23. 23.
    Chen L, He H, Yu H, Cao Y, Lei D, Menggen Q et al (2014) Electron field emission characteristics of graphene/carbon nanotubes hybrid field emitter. J Alloy Compd 610:659–664CrossRefGoogle Scholar
  24. 24.
    Kim T, Lee JS, Li K, Kang TJ, Kim YH (2016) High performance graphene foam emitter. Carbon 101:345–351CrossRefGoogle Scholar
  25. 25.
    Joung YS, Buie CR (2015) Antiwetting fabric produced by a combination of layer-by-layer assembly and electrophoretic deposition of hydrophobic nanoparticles. ACS Appl Mater Interfaces 7(36):20100–20110CrossRefGoogle Scholar
  26. 26.
    Tamrakar S, An Q, Thostenson ET, Rider AN, Haque BZ, Gillespie JW Jr (2016) tailoring interfacial properties by controlling carbon nanotube coating thickness on glass fibers using electrophoretic deposition. ACS Appl Mater Interfaces 8(2):1501–1510CrossRefGoogle Scholar
  27. 27.
    An Q, Rider AN, Thostenson ET (2012) Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties. Carbon 50(11):4130–4143CrossRefGoogle Scholar
  28. 28.
    Celik YC, Pulletikurthi G, Endres F (2016) Electrodeposition of Al, Zn, and Pt on silver-coated textile fibres from ionic liquids. J Solid State Electrochem 20(10):2781–2790CrossRefGoogle Scholar
  29. 29.
    Molina J, Fernandez J, del Rio AI, Bonastre J, Cases F (2013) Chemical and electrochemical study of fabrics coated with reduced graphene oxide. Appl Surf Sci 279:46–54CrossRefGoogle Scholar
  30. 30.
    Gorgieva S, Vogrinčič R, Kokol V (2015) Polydispersity and assembling phenomena of native and reactive dye-labelled nanocellulose. Cellulose 22(6):3541–3558CrossRefGoogle Scholar
  31. 31.
    Zhang K, Zhang Y, Wang S (2013) Effectively decoupling electrical and thermal conductivity of polymer composites. Carbon 65:105–111CrossRefGoogle Scholar
  32. 32.
    Zhang K, Wang S (2014) Thermal and electronic transport of semiconducting nanoparticle-functionalized carbon nanotubes. Carbon 69:46–54CrossRefGoogle Scholar
  33. 33.
    ASTM D 1518-85 (1990) Standard test method for thermal transmittance of textile materialsGoogle Scholar
  34. 34.
    AATCC Test Method 76-2005 (2010) Electrical surface resistivity of fabrics. AATCC Technical Manual 85:97Google Scholar
  35. 35.
    AATCC Test Method 183-2004 (2010) Transmittance or blocking of erythemally weighted ultraviolet radiation through fabrics. AATCC Technical Manual 85:318Google Scholar
  36. 36.
    Besra L, Liu M (2007) A review on fundamentals and applications of electrophoretic deposition (EPD). Prog Mater Sci 52(1):1–61CrossRefGoogle Scholar
  37. 37.
    Zhitomirsky I, Galor L (1997) Electrophoretic deposition of hydroxyapatite. J Mater Sci Mater Med 8(4):213–219CrossRefGoogle Scholar
  38. 38.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565CrossRefGoogle Scholar
  39. 39.
    Mathesh M, Liu J, Nam ND, Lam SKH, Zheng R, Barrow CJ et al (2013) Facile synthesis of graphene oxide hybrids bridged by copper ions for increased conductivity. J Mater Chem C 1(18):3084–3090CrossRefGoogle Scholar
  40. 40.
    Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10(12):4863CrossRefGoogle Scholar
  41. 41.
    Tian M, Qu L, Zhang X, Zhang K, Zhu S, Guo X et al (2014) Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers. Carbohyd Polym 111:456–462CrossRefGoogle Scholar
  42. 42.
    Wang X, Hu Y, Song L, Yang H, Xing W, Lu H (2011) In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J Mater Chem 21(12):4222–4227CrossRefGoogle Scholar
  43. 43.
    Zhu Y, Stoller MD, Cai W, Velamakanni A, Piner RD, Chen D et al (2010) Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 4(2):1227–1233CrossRefGoogle Scholar
  44. 44.
    Tang H, Ehlert GJ, Lin Y, Sodano HA (2012) Highly efficient synthesis of graphene nanocomposites. Nano Lett 12(1):84–90CrossRefGoogle Scholar
  45. 45.
    Waltman RJ, Pacansky J, Bates CW (1993) X-ray photoelectron spectroscopic studies on organic photoconductors: evaluation of atomic charges on chlorodiane blue and p-(diethylamino)benzaldehyde diphenylhydrazone. Chem Mater 5(12):1799–1804CrossRefGoogle Scholar
  46. 46.
    Berger C (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777):1191CrossRefGoogle Scholar
  47. 47.
    Elias DC, Nair RR, Mohiuddin TM, Morozov SV, Blake P, Halsall MP et al (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323(5914):610–613CrossRefGoogle Scholar
  48. 48.
    Watcharotone S, Dikin DA, Stankovich S, Piner R, Jung I, Dommett GH, Nguyen ST (2007) Graphene-silica composite thin films as transparent conductors. Nano Lett 7(7):1888–1892CrossRefGoogle Scholar
  49. 49.
    Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902CrossRefGoogle Scholar
  50. 50.
    Cai W, Piner RD, Stadermann FJ, Park S, Shaibat MA, Ishii Y et al (2008) Synthesis and solid-state nmr structural characterization of 13c-labeled graphite oxide. Science 321(5897):1815–1817CrossRefGoogle Scholar
  51. 51.
    Zhang K, Zhang Y, Wang S (2013) Enhancing thermoelectric properties of organic composites through hierarchical nanostructures. Sci Rep 3:3448CrossRefGoogle Scholar
  52. 52.
    Zhou T, Wang X, Cheng P, Wang T (2013) Improving the thermal conductivity of epoxy resin by the addition of a mixture of graphite nanoplatelets and silicon carbide microparticles. Express Polym Lett 7(7):585–594CrossRefGoogle Scholar
  53. 53.
    Hu X, Tian M, Qu L, Zhu S, Han G (2015) Multifunctional cotton fabrics with graphene/polyurethane coatings with far-infrared emission, electrical conductivity, and ultraviolet-blocking properties. Carbon 95:625–633CrossRefGoogle Scholar
  54. 54.
    Acik M, Lee G, Mattevi C, Chhowalla M, Cho K, Chabal YJ (2010) Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nat Mater 9(10):840–845CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute Advanced Fibrous Materials and Applications, College of Textiles and ClothingQingdao UniversityQingdaoChina
  2. 2.Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key LaboratoryQingdao UniversityQingdaoChina
  3. 3.Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong ProvinceQingdao UniversityQingdaoChina

Personalised recommendations