Journal of Materials Science

, Volume 53, Issue 12, pp 8807–8816 | Cite as

Enhanced dielectric constant and structural transformation in Fe-doped hydroxyapatite synthesized by wet chemical method

  • Brajendra Singh
  • Aditya Tandon
  • Anand K. Pandey
  • Priyanka Singh


We report the synthesis of single-phase Fe-doped hydroxyapatite (HAp) [Ca10−xFe x (PO4)6(OH)2 (0.0 ≤ x ≤ 0.3)] and enhanced dielectric constant of HAp with Fe doping. Rietveld analysis shows the change in x-axis-oriented lattice constant a in Fe-doped x = 0.1 and 0.3 compositions in comparison with parent HAp, while z-axis-oriented lattice constant c does not show any considerable change. Analysis of absorbance data shows two new symmetric stretching peaks for Fe-doped x = 0.1 and x = 0.3 compositions, which are not present in parent HAp. Magnetic measurements show paramagnetic behaviour of all Fe-doped samples at 300 K. Fe-doped Ca9.9Fe0.1(PO4)6(OH)2 composition shows increase in impedance in the presence of 500 Oersted (Oe) applied magnetic field in comparison with impedance in the absence of magnetic field. Ca9.9Fe0.1(PO4)6(OH)2 composition shows increase in dielectric constant in comparison with parent HAp in frequency range 5–35 MHz. Fe-doped Ca9.9Fe0.1(PO4)6(OH)2 composition shows ~ 970% colossal magnetoimpedance at 100 Hz and ~ 200% at 20 MHz frequency.



B. Singh and A. Tandon thank University Grants Commission—Department of Atomic Energy, Consortium for Scientific Research (UGC-DAE, CSR), Indore Centre, India for providing facility for experiments and financial support to visit Indore centre. B. Singh also thanks Dr. Mukul Gupta, UGC-DAE, CSR, Indore centre for his help in collecting XRD data and Dr. R. J. Choudhary, UGC-DAE, CSR, Indore centre for magnetic measurements. Authors declare that there are no conflicts of interest.


  1. 1.
    Kay M, Young R, Posner A (1964) Crystal structure of hydroxyapatite. Nature 204:1050–1052CrossRefGoogle Scholar
  2. 2.
    Han GG, Lee S, Kim DW, Kim DH, Noh JH, Park JH, Roy S, Ahn TK, Jung HS (2013) A simple method to control morphology of hydroxyapatite nano- and microcrystals by altering phase transition route. Cryst Growth Des 13:3414–3418CrossRefGoogle Scholar
  3. 3.
    Inoue K, Sassa K, Yokogawa Y, Sakka Y, Okido M, Asai S (2003) Control of crystal orientation of hydroxyapatite by imposition of a high magnetic field. Mater Trans 44:1133–1137CrossRefGoogle Scholar
  4. 4.
    Mahabole M, Aiyer R, Ramakrishan C, Sreedhar B, Khaimar R (2005) Synthesis, characterization and gas sensing property of hydroxyapatite ceramic. Bull Mater Sci 28:535–545CrossRefGoogle Scholar
  5. 5.
    Jevtic M, Mitric M, Skapin S, Jancar B, Ignjatovic N, Uskokovic D (2008) Crystal structure of hydroxyapatite nanorods synthesized by sonochemical homogeneous precipitation. Cryst Growth Des 8:2217–2222CrossRefGoogle Scholar
  6. 6.
    Singh B, Dubey AK, Kumar S, Saha N, Basu B, Gupta R (2011) In vitro biocompatibility and antimicrobial activity of wet chemically prepared Ca10−xAgx(PO4)6(OH)2 (0.0 ≤ x ≤ 0.5) hydroxyapatites. Mater Sci Eng, C 31:1320–1329CrossRefGoogle Scholar
  7. 7.
    Boanini E, Gazzano M, Bigi A (2010) Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater 6:1882–1894CrossRefGoogle Scholar
  8. 8.
    Ning CQ, Zhou Y (2002) In vitro bioactivity of a biocomposite fabricated from HA and Ti powders by powder metallurgy method. Biomaterials 23:2909–2915CrossRefGoogle Scholar
  9. 9.
    Goodwin CB, Brighton CT, Guyer RD, Johnson JR, Light KI, Yuan HA (1999) A double-blind study of capacitively coupled electrical stimulation as an adjunct to lumbar spinal fusions. Spine 24:1349–1356CrossRefGoogle Scholar
  10. 10.
    Scott G, King JB (1994) A prospective, double-blind trial of electrical capacitive coupling in the treatment of non-union of long bones. J Bone Joint Surg Am 76:820–826CrossRefGoogle Scholar
  11. 11.
    Yamashita K (2003) Enhanced bioactivity of electrically poled hydroxyapatite ceramics and coatings. Mater Sci Forum 426:3237–3242CrossRefGoogle Scholar
  12. 12.
    Otter MW, McLeod KJ, Rubin CT (1998) Effects of electromagnetic fields in experimental fracture repair. Clin Orthop Relat Res 335:S90–S112CrossRefGoogle Scholar
  13. 13.
    Xue W, Moore JL, Hosick HL, Bose S, Bandyopadhyay A, Lu W, Cheung KM, Luk KD (2006) Osteoprecursor cell response to strontium-containing hydroxyapatite ceramics. J Biomed Mater Res A 79:804CrossRefGoogle Scholar
  14. 14.
    Singh B, Kumar S, Basu B, Gupta R (2013) Enhanced ionic conduction in hydroxyapatites. Mater Lett 95:100–102CrossRefGoogle Scholar
  15. 15.
    Singh B, Kumar S, Basu B, Gupta R (2015) Conductivity studies of silver-, potassium-, and magnesium-doped hydroxyapatite. Int J Appl Ceram Technol 12:319–328CrossRefGoogle Scholar
  16. 16.
    Singh B, Kumar S, Saha N, Basu B, Gupta R (2015) Phase stability of silver particles embedded calcium phosphate bioceramics. Bull Mater Sci 38:525–529CrossRefGoogle Scholar
  17. 17.
    Kim TN, Feng QL, Kim JO, Wu J, Wang H, Chen GC, Cui FZ (1998) Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. J Mater Sci Mater Med 9:129–134CrossRefGoogle Scholar
  18. 18.
    Bose S, Fielding G, Tarfer S, Bandypadhyay A (2013) Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends Biotechnol 31:594–605CrossRefGoogle Scholar
  19. 19.
    Williams R (1968) Role of transition metal ions (1/26) in biological processes. R Inst Chem Rev 1:13–38CrossRefGoogle Scholar
  20. 20.
    Xu H, Aguilar ZP, Yang LKM, Duan HXY, Wei H, Wang A (2011) Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood. Biomaterials 32:9758–9765CrossRefGoogle Scholar
  21. 21.
    Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21(2009):2133–2148CrossRefGoogle Scholar
  22. 22.
    Pankhurst QA, Conolly J, Jones S, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167CrossRefGoogle Scholar
  23. 23.
    Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284–304CrossRefGoogle Scholar
  24. 24.
    Soenen SJ, Himmelreich U, Nuytten N, Cuyper MD (2011) Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labelling. Biomaterials 32:195–205CrossRefGoogle Scholar
  25. 25.
    Singh B (2015) Structural, transport, magnetic and magnetoelectric properties of CaMn1−xFexO3−δ (0.0 ≤ x ≤ 0.4). RSC Adv 5:39938–39945CrossRefGoogle Scholar
  26. 26.
    Singh B (2015) Room temperature large positive and negative magnetocapacitance in CaMn0.95Fe0.05O3−δ. Mater Lett 156:76–78CrossRefGoogle Scholar
  27. 27.
    Singh B (2016) Ru4+ induced colossal magnetoimpedance in Ru doped perovskite manganite at room temperature. Phys Chem Chem Phys 18:12947–12951CrossRefGoogle Scholar
  28. 28.
    Chandra VS, Baskar G, Suganthi RV, Elayaraja K, Joshy MIA, Beaula WS, Mythili R, Venkatraman G, Kalkura SN (2012) Blood compatibility of iron-doped nanosize hydroxyapatite and its drug release. ACS Appl Mater Interfaces 4:1200–1210CrossRefGoogle Scholar
  29. 29.
    Kramer E, Staruch M, Morey-Oppenheim A, Jain M, Budnick J, Suib S, Wei M (2013) synthesis and characterization of iron substituted hydroxyapatite via a simple ion-exchange procedure. J Mater Sci 48:665–673. CrossRefGoogle Scholar
  30. 30.
    Panseri S, Cunha C, D’Alessandro T, Sandri M, Giavaresi G, Marcacci M, Hung CT, Tampieri A (2012) Intrinsically superparamagnetic Fe-hydroxyapatite nanoparticles positively influence osteoblast-like cell behaviour. J Nanobiotechnol 10:32CrossRefGoogle Scholar
  31. 31.
    Zilm ME, Staruch M, Jain M, Wei M (2014) An intrinsically magnetic biomaterial with tunable magnetic properties. J Mater Chem B 2:7176–7185CrossRefGoogle Scholar
  32. 32.
    Arends J, Christoffersen J, Christoffersen MR, Eckert H, Fowler BO, Heughebaert JC, Nancollas GH, Yesinowski JP, Zawacki SJ (1987) A calcium hydroxyapatite precipitated from an aqueous solution: an international multimethod analysis. J Cryst Growth 84:515–532CrossRefGoogle Scholar
  33. 33.
    Chaudhry AA, Haque S, Kellici S, Boldrin P, Rehman I, Khalid FA, Darr JA (2006) Instant nano-hydroxyapatite: a continuous and rapid hydrothermal synthesis. Chem Commun 0:2286–2288CrossRefGoogle Scholar
  34. 34.
    Kaygilia O, Dorozhkin SV, Ates T, Al-Ghamdi AA, Yakuphanoglua F (2014) Dielectric properties of Fe doped hydroxyapatite prepared by sol–gel method. Ceram Int 40:9395–9402CrossRefGoogle Scholar
  35. 35.
    Tampieri A, D’Alessandro T, Sandri M, Sprio S, Landi E, Bertinetti L, Panseri S, Pepponi G, Goettlicher J, Bañobre-López M, Rivas J (2012) Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite. Acta Biomater 8:843–851CrossRefGoogle Scholar
  36. 36.
    Li Y, Widodo J, Lim S, Ooi CP (2012) Synthesis and cytocompatibility of manganese(II) and iron(III) substituted hydroxyapatite nanoparticles. J Mater Sci 47:754–763. CrossRefGoogle Scholar
  37. 37.
    Mene RU, Mahabole MP, Mohite KC, Khairnar RS (2014) Improved gas sensing and dielectric properties of Fe doped hydroxyapatite thick films: effect of molar concentrations. Mater Res Bull 50:227–234CrossRefGoogle Scholar
  38. 38.
    Antonakos A, Liarokapis E, Leventouri T (2007) Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials 28:3043–3054CrossRefGoogle Scholar
  39. 39.
    Fowler BO (1974) Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution. Inorg Chem 13:194–204CrossRefGoogle Scholar
  40. 40.
    Geng Z, Cui Z, Li Z, Zhu S, Liang Y, Lu WW, Yang X (2015) Synthesis, characterization and the formation mechanism of magnesium- and strontium-substituted hydroxyapatite. J Mater Chem B 3:3738–3746CrossRefGoogle Scholar
  41. 41.
    Aza PND, Guitian F, Santos C, Aza SD, Cusco R, Artus L (1997) Vibrational properties of calcium phosphate compounds. 2. Comparison between hydroxyapatite and β-tricalcium phosphate. Chem Mater 9:916–922CrossRefGoogle Scholar
  42. 42.
    Phan M, Peng H (2008) Giant magnetoimedance materials: fundamentals and applications. Prog Mater Sci 53:323–420CrossRefGoogle Scholar
  43. 43.
    Ipatov M, Zhukova V, Zhukov A, Gonzalez J (2016) Current controlled switching of impedance in magnetic conductor with tilted anisotropy easy axis and its applications. Sci Rep 6(1–8):36180CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Materials Chemistry Lab, Centre of Material SciencesUniversity of AllahabadAllahabadIndia

Personalised recommendations