Skip to main content
Log in

Effects of TiO2 nanoparticle size and concentration on dielectric properties of polypropylene nanocomposites

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polymer nanocomposites are promising materials for dielectric waveguides in high-data-rate communications, where extremely low loss is required. In this paper, we study the effect of titania (TiO2) nanoparticle size (30–300 nm) and concentration on the effective permittivity (εeff) and dielectric loss (tan δ) of polypropylene (PP) nanocomposites in two different frequency ranges: 100 Hz–300 kHz and 140 GHz–220 GHz. To aid the dispersion of TiO2 in the PP matrix, polypropylene-graft-maleic anhydride (PP-g-MA) is added. Using this approach, an εeff of 6.84 with tan δ of 0.0049 at 220 GHz is achieved in a 21.5 vol% 100 nm TiO2/PP nanocomposite. We find that εeff is insensitive to nanoparticle size in both frequency ranges while tan δ appears to depend on the filler size at the low frequency range. By using complex permittivity in Lichtenecker’s model, we are able to separate the loss contribution of the polymer matrix from that of the TiO2 nanoparticles. Our results provide insight into the choice of nanoparticle size and the effects of compatibilizer on millimeter-wave dielectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Lubecke VM, Mizuno K, Rebeiz GM (1998) Micromachining for terahertz applications. IEEE Trans Microw Theory Tech 46:1821–1831

    Article  Google Scholar 

  2. Fukuda S, Hino Y, Ohashi S et al (2011) A 12.5 + 12.5 Gb/s full-duplex plastic waveguide interconnect. In: IEEE international solid-state circuits conference, pp 150–152

  3. Hofmann A, Horster E, Weinzierl J et al (2003) Flexible low-loss dielectric waveguides for THz frequencies with transitions to metal waveguides. In: 33rd European microwave conference proceedings (IEEE Cat No03EX723C), pp 955–958

  4. Mendis R, Grischkowsky D (2000) Plastic ribbon THz waveguides. J Appl Phys 88:4449–4451

    Article  Google Scholar 

  5. Nelson JK (2007) Overview of nanodielectrics: insulating materials of the future. Electr Insul Conf Electr Manuf Expo 2007:229–235

    Google Scholar 

  6. Armstrong G (2015) An introduction to polymer nanocomposites. Eur J Phys 36:063001-1–063001-34

    Article  Google Scholar 

  7. Kim P, Doss NM, Tillotson JP et al (2009) High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer. ACS Nano 3:2581–2592

    Article  Google Scholar 

  8. Kim P, Jones SC, Hotchkiss PJ et al (2007) Phosphonic acid-modified barium titanate polymer nanocomposites with high permittivity and dielectric strength. Adv Mater 19:1001–1005

    Article  Google Scholar 

  9. Chanmal CV, Jog JP (2008) Dielectric relaxations in PVDF/BaTiO3 nanocomposites. Express Polym Lett 2:294–301

    Article  Google Scholar 

  10. Zhang G, Brannum D, Dong D et al (2016) Interfacial polarization-induced loss mechanisms in polypropylene/BaTiO3 nanocomposite dielectrics. Chem Mater 28:4646A–4646O

    Article  Google Scholar 

  11. Yang X, Chahal PP (2015) On-wafer terahertz ribbon waveguides using polymer-ceramic nanocomposites. IEEE Trans Compon Packag Manuf Technol 5:245–255

    Article  Google Scholar 

  12. Yang W, Yi R, Yang X et al (2012) Effect of particle size and dispersion on dielectric properties in ZnO/epoxy resin composites. Trans Electr Electron Mater 13:116–120

    Article  Google Scholar 

  13. Li H, Jiang M, Dong L et al (2013) Particle size dependence of the dielectric properties of polyvinyledene fluoride/silver composites. J Macromol Sci Part B 52:1058–1066

    Google Scholar 

  14. Zhiping Z, Jianmin X, Xubing S, Deyue Y (1992) Calculation of the mean-square radius of gyration for polymer chains with side-groups. Eur Polym J 28:1339–1343

    Article  Google Scholar 

  15. Vicente AN, Dip GM, Junqueira C (2011) The step by step development of NRW method. In: 2011 SBMO/IEEE MTT-S international microwave and optoelectronics conference (IMOC 2011)

  16. Luukkonen O, Maslovski SI, Tretyakov SA (2011) A stepwise Nicolson–Ross–Weir-based material parameter extraction method. IEEE Antennas Wirel Propag Lett 10:1295–1298

    Article  Google Scholar 

  17. Womble MD, Herbsommer J, Lee Y-J, Hsu J (2017) Understanding the source of dielectric loss in titania/polypropylene nanocomposites up to 220 GHz. In: Optical interconnects XVII

  18. Hong CH, Lee YB, Bae JW et al (2005) Preparation and mechanical properties of polypropylene/clay nanocomposites for automotive parts application. J Appl Polym Sci 98:427–433

    Article  Google Scholar 

  19. Bikiaris DN, Vassiliou A, Pavlidou E, Karayannidis GP (2005) Compatibilisation effect of PP-g-MA copolymer on iPP/SiO2 nanocomposites prepared by melt mixing. Eur Polym J 41:1965–1978

    Article  Google Scholar 

  20. Miao Z, Liu Y (2010) Influence of maleic anhydride grafted polypropylene on the dispersion of clay in polypropylene/clay nanocomposites. Polym J 42:745–751

    Article  Google Scholar 

  21. Prashantha K, Soulestin J, Lacrampe MF et al (2008) Multi-walled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: improvement of dispersion and mechanical properties through PP-g-MA addition. Express Polym Lett 2:735–745

    Article  Google Scholar 

  22. Xie L, Huang X, Huang Y et al (2013) Core-shell structured hyperbranched aromatic polyamide/BaTiO3 hybrid filler for poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) nanocomposites with the dielectric constant comparable to that of percolative composites. ACS Appl Mater Interfaces 5:1747–1756

    Article  Google Scholar 

  23. Zhu L (2014) Exploring strategies for high dielectric constant and low loss polymer dielectrics. J Phys Chem Lett 5:3677–3687

    Article  Google Scholar 

  24. Nayak S, Chaki TK, Khastgir D et al (2013) Development of poly(dimethylsiloxane)/BaTiO3 nanocomposites as dielectric material. Adv Mater Res 622–623:897–900

    Google Scholar 

  25. Kanehara K, Hoshina T, Takeda H, Tsurumi T (2015) Terahertz permittivity of rutile TiO2 single crystal measured by anisotropic far-infrared ellipsometry. J Ceram Soc Jpn 123:303–306

    Article  Google Scholar 

  26. Karkkainen KK, Sihvola AH, Nikoskinen KI (2000) Effective permittivity of mixtures: numerical validation by the FDTD method. IEEE Trans Geosci Remote Sens 38:1303–1308

    Article  Google Scholar 

  27. Hossain ME, Liu SY, O’Brien S, Li J (2014) Modeling of high-k dielectric nanocomposites. Acta Mech 225:1197–1209

    Article  Google Scholar 

  28. Barber P, Balasubramanian S, Anguchamy Y et al (2009) Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2:1697–1733

    Article  Google Scholar 

  29. Fan B-H, Zha J-W, Wang D et al (2012) Size-dependent low-frequency dielectric properties in the BaTiO3/poly(vinylidene fluoride) nanocomposite films. Appl Phys Lett 100:012903-1–012903-4

    Google Scholar 

  30. Schöche S, Hofmann T, Korlacki R et al (2013) Infrared dielectric anisotropy and phonon modes of rutile TiO2. J Appl Phys 113:164102–1–164102–13

    Google Scholar 

  31. Cho S-D, Lee S-Y, Hyun J-G, Paik K-W (2005) Comparison of theoretical predictions and experimental values of the dielectric constant of epoxy/BaTiO3 composite embedded capacitor films. J Mater Sci Mater Electron 16:77–84. https://doi.org/10.1007/s10854-005-6454-3

    Article  Google Scholar 

  32. Wang Y, Wang J-C, Chen S-Z (2014) Role of surfactant molecular weight on morphology and properties of functionalized graphite oxide filled polypropylene nanocomposites. Express Polym Lett 8:881–894

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. W. Voit for the use of the speed mixer and the hot press, Dr. B. Cook for useful discussion, and the University of Dallas and Texas Instruments for the financial support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia W. P. Hsu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Womble, M.D., Herbsommer, J., Lee, YJ. et al. Effects of TiO2 nanoparticle size and concentration on dielectric properties of polypropylene nanocomposites. J Mater Sci 53, 9149–9159 (2018). https://doi.org/10.1007/s10853-018-2223-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2223-6

Keywords

Navigation