Skip to main content
Log in

Synthesis of Rh nanoparticles in alcohols: magnetic and electrocatalytic properties

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The synthesis of Rh nanoparticles has been performed through an organometallic approach starting from the tris(allyl) rhodium complex, Rh(η3-C3H5)3, as precursor and using an alcohol as both a solvent and a stabilizer, under mild reaction conditions (room temperature; 3 bar H2). The influence of the alcohol used, among methanol, propanol or heptanol, on the morphological and structural characteristics as well as on the magnetic and electrocatalytic properties of the obtained Rh nanoparticles has been investigated. Assemblies of Rh nanoparticles of various sizes have been observed depending on the alkyl chain length of the alcohol used. A noticeable effect of the nanostructured character of these Rh nanoparticles is the appearance of a ferromagnetic ordering at room temperature due to a modified electronic structure. Magnetic moments per atom were determined as follows: 0.099, 0.073 and 0.036 µB for methanol, heptanol and propanol, respectively. The electrochemical evaluation of these Rh nanoparticles on the oxygen reduction reaction (ORR) showed that the electroactivity depends on the chain length of the alcohol; thus, Rh-heptanol system displayed the highest electroactivity for ORR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Hasa B, Kalamaras E, Papaioannou EI, Vakros J, Sygello L, Katsaounis A (2015) Effect of TiO2 loading on Pt–Ru catalysts during alcohol electrooxidation. Electrochim Acta 179:578–587

    Article  Google Scholar 

  2. Hamnett A, Vielstich W, Lamm A, Gasteiger HA (2003) Handbook of fuel cells: fundamentals, technology and applications. Wiley, Chichester

    Google Scholar 

  3. Zhang J (2008) PEM fuel cell electrocatalysts and catalyst layers. Springer, Berlin

    Book  Google Scholar 

  4. Banham D, Ye S, Pei K, Ozaki JI, Kishimoto T, Imashir Y (2015) A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. J Power Sour 285:334–348

    Article  Google Scholar 

  5. Gewirth AA, Thorum MS (2010) Electroreduction of dioxygen for fuel-cell applications: materials and challenges. Inorg Chem 49:3557–3566

    Article  Google Scholar 

  6. Jacinto MJ, Kiyohara PK, Masunaga SH, Jardim RF, Rossi LM (2008) Recoverable rhodium nanoparticles: synthesis, characterization and catalytic performance in hydrogenation reactions. Appl Catal A Gen 338:52–57

    Article  Google Scholar 

  7. Schmid G (2012) Nanoparticles: from theory to application, 2nd edn. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  8. Chen LY, Fujita T, Ding Y, Chen MW (2010) A three-dimensional gold-decorated nanoporous copper core-shell composite for electrocatalysis and nonenzymatic biosensing. Adv Funct Mater 20:2279–2285

    Article  Google Scholar 

  9. Tao AR, Habas S, Yang P (2008) Shape control of coloidal metal nanocrystals. Small 4:310–325

    Article  Google Scholar 

  10. Sau TK, Rogach AL (2010) Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv Mater 22:1781–1804

    Article  Google Scholar 

  11. Davis SA, Breulmann M, Rhodes KH, Zhang B, Mann S (2001) Template-directed assembly using nanoparticle building blocks: a nanotectonic approach to organized materials. Chem Mater 13:3218–3226

    Article  Google Scholar 

  12. Li D, Cui Y, Wang K, He Q, Yan X, Li J (2007) Thermosensitive nanostructures comprising gold nanoparticles grafted with block copolymers. Adv Funct Mater 17:3134–3140

    Article  Google Scholar 

  13. Cai B, Dianat A, Hübner R, Liu W, Wen D, Benad A, Sonntag L, Gemming T, Cuniberti G, Eychmüller A (2017) Multimetallic hierarchical aerogels: shape engineering of the building blocks for efficient electrocatalysis. Adv Mater 29:1605254

    Article  Google Scholar 

  14. Le Rhun V, Garnier E, Pronier S, Alonso-Vante N (2000) Electrocatalysis on nanoscale ruthenium-based material manufactured by carbonyl decomposition. Electrochem Commun 2:475–479

    Article  Google Scholar 

  15. Bron M, Bogdanoff P, Fiechter S, Hilgendorff M, Radnik J, Dorbandt I, Schulenburg H, Tributsch H (2001) Carbon supported catalysts for oxygen reduction in acidic media prepared by thermolysis of Ru3(CO)12. J Electroanal Chem 517:85–94

    Article  Google Scholar 

  16. Castellanos RH, Borja-Arco E, Altamirano-Gutiérrez A, Ortega-Borges R, Meas Y, Jiménez-Sandoval O (2005) Electrocatalytic properties of novel ruthenium-based compounds for the oxygen reduction reaction in 0.5 M H2SO4: effects of the synthesis atmosphere and temperature. J New Mater Electrochem Syst 8:69–75

    Google Scholar 

  17. Guyonnet Bilé E, Sassine R, Denicourt-Nowicki A, Launay F, Roucoux A (2011) New ammonium surfactant-stabilized rhodium(0) colloidal suspensions: influence of novel counter-anions on physico-chemical and catalytic properties. Dalton Trans 40:6524–6531

    Article  Google Scholar 

  18. Trang Thanh Chau N, Menuel S, Colombel-Rouen S, Guerrero M, Monflier E, Philippot K, Denicourt-Nowicki A, Roucoux A (2016) Active hydrogenation Rh nanocatalysts protected by new self-assembled supramolecular complexes of cyclodextrins and surfactants in water. RSC Adv 6:108125–108131

    Article  Google Scholar 

  19. Gacem N, Diao P (2013) Effect of solvent polarity on the assembly behavior pf PVP coated rhodium nanoparticles. Colloids Surf A Physicochem Eng Asp 417:32–38

    Article  Google Scholar 

  20. Long NV, Chien ND, Hirata H, Matsubara T, Ohtaki M, Nogami M (2011) Highly monodisperse cubic and octahedral rhodium nanocrystals: their evolutions from sharp polyhedrons into branched nanostructures and surface-enhanced Raman scattering. J Cryst Growth 320:78–89

    Article  Google Scholar 

  21. Marín-Almazo M, Ascencio JA, Pérez-Álvarez M, Gutiérrez-Wing C, José-Yacaman M (2005) Synthesis and characterization of rhodium nanoparticles using HREM techniques. Microchem J 81:133–138

    Article  Google Scholar 

  22. Suo Y, Hsing I-M (2011) Highly active rhodium/carbon nanocatalysts for ethanol oxidation in alkaline medium. J Power Sour 196:7945–7950

    Article  Google Scholar 

  23. Durap F, Zahmakiran M, Özkar S (2009) Water soluble laurate-stabilized rhodium(0) nanoclusters catalyst with unprecedented catalytic lifetime in the hydrolytic dehydrogenation of ammonia-borane. Appl Catal A 369:53–59

    Article  Google Scholar 

  24. Karschin A, Katsounaros I, Klemm SO, Meier JC, Mayrhofer KJJ (2012) Degradation of polycrystalline rhodium and rhodium nanoparticles. Electrochim Acta 70:355–359

    Article  Google Scholar 

  25. Tzorbatzoglou F, Brouzgou A, Tsiakaras P (2015) Electrocatalytic activity of Vulcan-XC-72 supported Pd, Rh and PdxRhy toward HOR and ORR. Appl Catal B 174–175:203–211

    Article  Google Scholar 

  26. Lin C, Wu G, Li H, Geng Y, Xie G, Yang J, Liu B, Jin J (2017) Rh nanoparticles supported on ultrathin carbon nanosheets for high-performance oxygen reduction reaction and catalytic hydrogenation. Nanoscale 9:1834–1839

    Article  Google Scholar 

  27. Yao L, Zhao J, Lee J-M (2017) Small size Rh nanoparticles in micelle nanostructure by ionic liquid/CTAB for acceptorless dehydrogenation of alcohols only in pure water. ACS Sustain Chem Eng 5:2056–2060

    Article  Google Scholar 

  28. Hoefelmeyer JD, Liu H, Somorjai GA, Tilley TD (2007) Reverse micelle synthesis of rhodium nanoparticles. J Colloid Interface Sci 309:86–93

    Article  Google Scholar 

  29. Xie S, Zhang H, Lu N, Jin M, Wang J, Kim MJ, Xie Z, Xia Y (2013) Synthesis of rhodium concave tetrahedrons by collectively manipulating the reduction kinetics, facet-selective capping, and surface diffusion. Nano Lett 13:6262–6268

    Article  Google Scholar 

  30. Zahmakiran M, Özcar S (2009) Dimethylammonium hexanoate stabilized rhodium(0) nanoclusters identified as true heterogeneous catalysts with the highest observed activity in the dehydrogenation of dimethylamine-borane. Inorg Chem 48:8955–8964

    Article  Google Scholar 

  31. Ayvali T, Zahmakiran M, Özcar S (2011) One-pot synthesis of colloidally robust rhodium(0) nanoparticles and their catalytic activity in the dehydrogenation of ammonia-borane for chemical hydrogen storage. Dalton Trans 40:3584–3591

    Article  Google Scholar 

  32. Li Y, Li N, Yanagisawa K, Ding X, Li X, Wei Y, Yan X (2013) Spherical Rh17S15@C and Rh@C core-shell nanocomposites: synthesis, growth mechanism and methanol tolerance in oxygen reduction reaction. Chem Eng J 228:45–53

    Article  Google Scholar 

  33. Uribe-Godínez J, García-Montalvo V, Jiménez-Sandoval O (2013) Development of Ir-based and Rh-based catalyst electrodes for PEM fuel cell applications. Int J Hydrog Energy 38:7680–7683

    Article  Google Scholar 

  34. Khosravian H, Liang Z, Uhl A, Trenary M, Meyer R (2012) Controlled Synthesis of Rh nanoparticles on TiO2(110) via Rh(CO)2(acac). J Phys Chem C 116:11987–11993

    Article  Google Scholar 

  35. Axet MR, Castillón S, Claver C, Philippot K, Lecante P, Chaudret B (2008) Chiral diphosphite-modified rhodium(0) nanoparticles: catalyst reservoir for styrene hydroformylation. Eur J Inorg Chem 22:3460–3466

    Article  Google Scholar 

  36. Ramírez-Meneses E, Philippot K, Chaudret B (2015) Influencia del medio de reacción en la estabilización de nanoestructuras de Rodio. Ingeniería Investigación y Tecnología 16:225–237

    Article  Google Scholar 

  37. Ibrahim M, Poreddy R, Philippot K, Riisager A, Garcia-Suarez EJ (2016) Chemoselective hydrogenation of arenes by PVP supported Rh nanoparticles. Dalton Trans 45:19368–19373

    Article  Google Scholar 

  38. Zhang J, Ibrahim M, Collière V, Asakura H, Tanaka T, Teramura K, Philippot K, Yang N (2016) Rh nanoparticles with NiOx surface decoration for selective hydrogenolysis of C–O bond over arene hydrogenation. J Mol Catal A Chem 422:188–197

    Article  Google Scholar 

  39. Ibrahim M, Garcia MAS, Vono LLR, Guerrero M, Lecante P, Rossi LM, Philippot K (2016) Polymer versus phosphine stabilized Rh nanoparticles as components of supported catalysts: implication in the hydrogenation of cyclohexene model molecule. Dalton Trans 45:17782–17791

    Article  Google Scholar 

  40. Karahan S, Zahmakiran M, Özkar S (2012) A facile one-step synthesis of polymer supported rhodium nanoparticles in organic medium and their catalytic performance in the dehydrogenation of ammonia-borane. Chem Commun 48:1180–1182

    Article  Google Scholar 

  41. Domínguez-Crespo MA, Ramírez-Meneses E, Montiel-Palma V, Torres Huerta AM, Dorantes Rosales H (2009) Synthesis and electrochemical characterization of stabilized nickel nanoparticles. Int J Hydrog Energy 34:1664–1676

    Article  Google Scholar 

  42. Ramírez-Meneses E, Montiel-Palma V, Domínguez-Crespo MA, Izaguirre-López MG, Palacios-González E, Dorantes-Rosales H (2015) Shape-and size-controlled Ag nanoparticles stabilized by in situ generated secondary amines. J Alloys Compd 643:s51–s61

    Article  Google Scholar 

  43. Ramírez-Meneses E, Domínguez-Crespo MA, Montiel-Palma V, Chávez-Herrera VH, Gómez E, Hernández-Tapia G (2009) Electrochemical characterization of platinum nanoparticles stabilized by amines. J Alloys Compd 483:573–577

    Article  Google Scholar 

  44. Domínguez-Crespo MA, Ramírez-Meneses E, Torres-Huerta AM, Dorantes-Rosales H (2011) Effect of amine ligands on stabilization of Pt nanoparticles as electrode materials for electro-oxidation of methanol. J New Mater Electrochem Syst 14:1–10

    Google Scholar 

  45. Domínguez-Crespo MA, Ramírez-Meneses E, Torres-Huerta AM, Garibay-Febles V, Philippot K (2012) Kinetics of hydrogen evolution reaction on stabilized Ni, Pt and Ni–Pt nanoparticles obtained by an organometallic approach. Int J Hydrog Energy 37:4798–4811

    Article  Google Scholar 

  46. Manzo-Robledo A, Costa Natália JS, Philippot K, Rossi Liane M, Ramírez-Meneses E, Guerrero-Ortega LPA, Ezquerra-Quiroga S (2015) Electro-oxidation of methanol in alkaline conditions using Pd–Ni nanoparticles prepared from organometallic precursors and supported on carbon Vulcan. J Nanoparticle Res 17:474

    Article  Google Scholar 

  47. Ramirez-Meneses E (2004) Synthèse et caractérisation de nanoparticules métalliques à base de rhodium, platine et palladium, stabilisées par des ligands. PhD thesis, Université Paul Sabatier-Toulouse

  48. Hermann WA, Brauer G (2000) Synthetic methods of organometallic and inorganic chemistry (Hermann/Brauer): transition metals. Thieme Medical Publisher, Stuttgart

    Google Scholar 

  49. Ibrahim M (2016) Rhodium based mono-and bi-metallic nanoparticles: synthesis, characterization and application in catalysis. PhD thesis, Université Paul Sabatier-Toulouse

  50. Coelho AA (2000) Whole-profile structure solution from powder diffraction data using simulated annealing. J Appl Cryst 33:899–908

    Article  Google Scholar 

  51. Lejaeghere K, Van Speybroeck V, Van Oost G, Cottenier S (2014) Error estimates for solid-state density-functional theory predictions: an overview by means of the ground-state elemental crystals. Crit Rev Solid State Mater Sci 39:1–24

    Article  Google Scholar 

  52. Durón S, Rivera-Noriega R, Nkeng P, Poillerat G, Solorza-Feria O (2004) Kinetic study of oxygen reduction on nanoparticles of ruthenium synthesized by pyrolysis of Ru3(CO)12. J Electroanal 566(2004):281–289

    Article  Google Scholar 

  53. Pleskov YV, Filinovskii VY (1976) The rotating disk electrode. Plenum Press, New York

    Book  Google Scholar 

  54. Hsueh K-L, Gonzalez ER, Srinivasan S (1983) Electrolyte effects on oxygen reduction kinetics at platinum: a rotating ring-disc electrode analysis. Electrochim Acta 28(1983):691–697

    Article  Google Scholar 

  55. Baysinger G, Berger LI, Goldberg RN, Kehiaian HV, Kuchitsu K, Rosenblatt G, Roth DL, Zwillinger D (2005) CRC handbook of chemistry and physics, 74th edn. CRC Press, Boca Raton FL

    Google Scholar 

  56. Liu Y, Tang N, Wan X, Feng Q, Li M, Xu Q, Liu F, Du Y (2013) Realization of ferromagnetic graphene oxide with high magnetization by doping graphene oxide with nitrogen. Sci Rep 3:2566

    Article  Google Scholar 

  57. Vidoni O, Philippot K, Amiens C, Chaudret B, Balmes O, Malm J-O, Bovin J-O, Senocq F, Casanove M-J (1999) Novel, spongelike ruthenium particles of controllable size stabilized only by organic solvents. Angew Chem Int Ed 38:3736–3738

    Article  Google Scholar 

  58. Pelzer K, Vidoni O, Philippot K, Chaudret B, Collière V (2003) Organometallic synthesis of size-controlled polycrystalline ruthenium nanoparticles in the presence of alcohols. Adv Funct Mater 13:118–126

    Article  Google Scholar 

  59. Pelzer K, Philippot K, Chaudret B (2003) Synthesis of monodisperse heptanol stabilized ruthenium nanoparticles. Evidence for the presence of surface hydrogen. Z Phys Chem 217:1539–1548

    Article  Google Scholar 

  60. Balzar D, Audebrand N, Daymond MR, Fitch A, Hewat A, Langford JI, Le Bail A, Louër D, Masson O, McCowan CN, Popa NC, Stephens PW, Toby BH (2004) Size-strain line-broadening analysis of the ceria round-robin sample. J Appl Cryst 37:911–924

    Article  Google Scholar 

  61. Balzar D (1999) International union of crystallography monographs on crystallography, vol 10. Oxford University Press, New York

    Google Scholar 

  62. Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, functionalization and application. Angew Chem Int Ed 46:1222–1244

    Article  Google Scholar 

  63. Singamaneni S, Bliznyuk VN, Binek C, Tsymbal EY (2011) Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications. J Mater Chem 21:16819–16845

    Article  Google Scholar 

  64. Getzlaff M (2008) Fundamentals of magnetism. Springer, Berlin

    Google Scholar 

  65. Sampedro B, Crespo P, Hernando A, Litrán R, Sánchez López JC, López Cartes C, Fernandez A, Ramírez J, González Calbet J, Vallet M (2003) Ferromagnetism in fcc twinned 2.4 nm Size Pd nanoparticles. Phys Rev Lett 91:237203

    Article  Google Scholar 

  66. Trasatti S, Petrii OA (1991) Real surface area measurements in electrochemistry. Pure Appl Chem 63(1991):711–734

    Article  Google Scholar 

  67. Łukaszewski M, Soszko M, Czerwiński A (2016) Electrochemical methods of real surface area determination of noble metal electrodes—an overview. Int J Electrochem Sci 11:4442–4469

    Article  Google Scholar 

  68. Chi Linh D, Thy San P, Ngoc Phong N, Viet Quan T (2013) Properties of Pt/C nanoparticle catalysts synthesized by electroless deposition for proton exchange membrane fuel cell. Adv Nat Sci Nanosci Nanotechnol 4:035011

    Article  Google Scholar 

  69. Clavilier J, Wasberg M, Petit M, Klein LH (1994) Detailed analysis of the voltammetry of Rh(111) in perchloric acid solution. J Electroanal Chem 374:123–131

    Article  Google Scholar 

  70. Langkau T, Baltruschat H (1998) The rate of anion and hydrogen adsorption on Pt(111) and Rh(111). Electrochim Acta 44:909–918

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support provided by CONACyT (Project 157613), Dirección de Investigación-Universidad Iberoamericana (UIA) F132021 project, Instituto Politécnico Nacional (SIP-20171186, SIP-20171148), CONACyT CB2015-252181 and C-2014-1905 projects and SNI-CONACyT. The authors would like to acknowledge the technical assistance provided by Luis M. Palacios-Romero. CNRS and University Paul Sabatier Toulouse are also thanked for financial support. The research was conducted in the framework of the “French-Mexican International Laboratory (LIA) LCMMC.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ramírez-Meneses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Meneses, E., Philippot, K., Domínguez-Crespo, M.A. et al. Synthesis of Rh nanoparticles in alcohols: magnetic and electrocatalytic properties. J Mater Sci 53, 8933–8950 (2018). https://doi.org/10.1007/s10853-018-2221-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2221-8

Keywords

Navigation