Journal of Materials Science

, Volume 53, Issue 12, pp 9131–9137 | Cite as

Enhanced metal–insulator transition in V2O3 by thermal quenching after growth

  • J. Trastoy
  • Y. Kalcheim
  • J. del Valle
  • I. Valmianski
  • Ivan K. Schuller
Electronic materials


The properties of oxides are critically controlled by the oxygen stoichiometry. Minimal variations in oxygen content can lead to vast changes in their properties. The addition of oxygen during synthesis may not be a precise enough knob for tuning the oxygen stoichiometry when the material has several stable and close oxidation states. We use sputtered V2O3 films as an example to show that rapid transfer of the sample away from the heating element after growth causes a temperature decrease (quenching) quick enough to freeze the correct oxygen stoichiometry in the sample. This procedure has allowed us to improve dramatically the V2O3 electronic properties without any adverse measurable effects on the structural properties. In this fashion, the metal–insulator transition resistance change was increased by two orders of magnitude, while the transition width was decreased by 20 K.



Work supported by the Vannevar Bush Faculty Fellowship program sponsored by the Basic Research Office of the Assistant Secretary of Defense for Research and Engineering and funded by the Office of Naval Research through Grant N00014-15-1-2848. J. Trastoy and J. del Valle thank the Fundación Ramón Areces for a postdoctoral fellowship.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interests.

Supplementary material

10853_2018_2214_MOESM1_ESM.docx (135 kb)
Supplementary material 1 (DOCX 134 kb)


  1. 1.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRefGoogle Scholar
  2. 2.
    Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21:2463–2485CrossRefGoogle Scholar
  3. 3.
    Yang Z, Ko C, Ramanathan S (2011) Oxide electronics utilizing ultrafast metal-insulator transitions. Annu Rev Mater Res 41:337–367CrossRefGoogle Scholar
  4. 4.
    Zhou You, Ramanathan S (2015) Mott memory and neuromorphic devices. Proc IEEE 103:1289–1310CrossRefGoogle Scholar
  5. 5.
    Lorenz M, Ramachandra Rao MS, Venkatesan T et al (2016) The 2016 oxide electronic materials and oxide interfaces roadmap. J Phys D Appl Phys 49:1–53CrossRefGoogle Scholar
  6. 6.
    Nogués J, Schuller IK (1999) Exchange bias. J Magn Magn Mater 192:203–232CrossRefGoogle Scholar
  7. 7.
    Bednorz JG, Müller KA (1986) Possible high Tc superconductivity in the Ba–La–Cu–O system. Z Phys B Condens Matter 64:189–193CrossRefGoogle Scholar
  8. 8.
    Imada M, Fujimori A, Tokura Y (1998) Metal-insulator transitions. Rev Mod Phys 70:1039–1263CrossRefGoogle Scholar
  9. 9.
    Sawa A (2008) Resistive switching in transition metal oxides. Mater Today 11:28–36CrossRefGoogle Scholar
  10. 10.
    Jorgensen JD, Veal BW, Kwok WK et al (1987) Structural and superconducting properties of orthorhombic and tetragonal YBa2Cu3O7−x: the effect of oxygen stoichiometry and ordering on superconductivity. Phys Rev B 36:5731–5734CrossRefGoogle Scholar
  11. 11.
    Tranquada JM, Moudden AH, Goldman AI et al (1988) Antiferromagnetism in YBa2Cu3O6+x. Phys Rev B 38:2477–2485CrossRefGoogle Scholar
  12. 12.
    Schuller IK, Jorgensen JD (1989) Structure of high Tc oxide superconductors. MRS Bull 14:27–30CrossRefGoogle Scholar
  13. 13.
    Jorgensen JD, Veal BW, Paulikas AP et al (1990) Structural properties of oxygen-deficient YBa2Cu3O7−d. Phys Rev B 41:1863–1877CrossRefGoogle Scholar
  14. 14.
    Biener J, Bäumer M, Madix RJ et al (1999) A synchrotron study of the growth of vanadium oxide on Al2O3(0001). Surf Sci 441:1–9CrossRefGoogle Scholar
  15. 15.
    Sharoni A, Ramírez JG, Schuller IK (2008) Multiple avalanches across the metal-insulator transition of vanadium oxide nanoscaled junctions. Phys Rev Lett 101:1–4CrossRefGoogle Scholar
  16. 16.
    Dillemans L, Lieten RR, Menghini M et al (2012) Correlation between strain and the metal-insulator transition in epitaxial V2O3 thin films grown by Molecular Beam Epitaxy. Thin Solid Films 520:4730–4733CrossRefGoogle Scholar
  17. 17.
    Masina BN, Lafane S, Wu L et al (2015) Optimizing the synthesis of vanadium–oxygen nanostructures by plasma plume dynamics using optical imaging. Opt Eng 54:1–8CrossRefGoogle Scholar
  18. 18.
    Yun SJ, Lim JW, Noh JS et al (2009) Vanadium dioxide and vanadium sesquioxide thin films fabricated on (0001) or (1010) Al2O3 by reactive RF-magnetron sputter deposition and subsequent annealing processes. Jpn J Appl Phys 48:1–4Google Scholar
  19. 19.
    Billik P, Cigáň A, Čaplovičová M et al (2013) V2O3 nanocrystals prepared by mechanochemical–thermal reduction and their magnetic properties. Mater Lett 110:24–26CrossRefGoogle Scholar
  20. 20.
    Lee S, Meyer TL, Park S et al (2014) Growth control of the oxidation state in vanadium oxide thin films. Appl Phys Lett 105:1–4Google Scholar
  21. 21.
    Van Bilzen B, Homm P, Dillemans L et al (2015) Production of VO2 thin films through post-deposition annealing of V2O3 and VOx films. Thin Solid Films 591:143–148CrossRefGoogle Scholar
  22. 22.
    Xu HY, Huang YH, Liu S et al (2016) Effects of annealing ambient on oxygen vacancies and phase transition temperature of VO2 thin films. RSC Adv 6:79383–79388CrossRefGoogle Scholar
  23. 23.
    Zhan Y, Xiao X, Lu Y, et al (2017) High performance VO2 thin films fabricated by room-temperature reactive magnetron sputtering and rapid thermal annealing. In: Qiu M, Gu M, Yuan X, Zhou Z (eds) AOPC 2017 Optoelectron. Micro/nano-optics. SPIE, p 30Google Scholar
  24. 24.
    Farneth WE, Bordia RK, McCarron EM et al (1988) Influence of oxygen stoichiometry on the structure and superconducting transition temperature of YBa2Cu3Ox. Solid State Commun 66:953–959CrossRefGoogle Scholar
  25. 25.
    Xie XM, Chen TG, Wu ZL (1989) Oxygen diffusion in the superconducting oxide YBa2Cu3O7−x. Phys Rev B 40:4549–4556CrossRefGoogle Scholar
  26. 26.
    Choi WS, Jeen H, Lee JH et al (2013) Reversal of the lattice structure in SrCoOx epitaxial thin films studied by real-time optical spectroscopy and first-principles calculations. Phys Rev Lett 111:1–5Google Scholar
  27. 27.
    Islam MA, Xie Y, Scafetta MD et al (2015) Raman scattering in La1−xSrxFeO3−δ thin films: annealing-induced reduction and phase transformation. J Phys Condens Matter 27:1–7CrossRefGoogle Scholar
  28. 28.
    Morin FJ (1959) Oxides which show a metal-to-insulator transition at the Neel temperature. Phys Rev Lett 3:34–36CrossRefGoogle Scholar
  29. 29.
    McWhan DB, Remeika JP (1970) Metal-insulator transition in (V1−xCrx)2O3. Phys Rev B 2:3734–3750CrossRefGoogle Scholar
  30. 30.
    Shin S, Suga S, Taniguchi M et al (1990) Vacuum-ultraviolet reflectance and photoemission study of the metal-insulator phase transitions in VO2, V6O13, and V2O3. Phys Rev B 41:4993–5009CrossRefGoogle Scholar
  31. 31.
    Rozenberg MJ, Kotliar G, Kajueter H et al (1995) Optical conductivity in Mott-Hubbard systems. Phys Rev Lett 75:105–108CrossRefGoogle Scholar
  32. 32.
    Held K, Keller G, Eyert V et al (2001) Mott-Hubbard metal-insulator transition in paramagnetic V2O3: an LDA + DMFT(QMC) study. Phys Rev Lett 86:5345–5348CrossRefGoogle Scholar
  33. 33.
    Rodolakis F, Hansmann P, Rueff JP et al (2010) Inequivalent routes across the mott transition in V2O3 explored by X-ray absorption. Phys Rev Lett 104:1–4CrossRefGoogle Scholar
  34. 34.
    Ramirez JG, Saerbeck T, Wang S et al (2015) Effect of disorder on the metal-insulator transition of vanadium oxides: local versus global effects. Phys Rev B 91:1–5CrossRefGoogle Scholar
  35. 35.
    Carter SA, Rosenbaum TF, Metcalf P et al (1993) Mass enhancement and magnetic order at the Mott-Hubbard transition. Phys Rev B 48:16841–16844CrossRefGoogle Scholar
  36. 36.
    Bao W, Broholm C, Carter SA et al (1993) Incommensurate spin density wave in metallic V2−yO3. Phys Rev Lett 71:766–769CrossRefGoogle Scholar
  37. 37.
    Kachi S, Kosuge K, Okinaka H (1973) Metal-insulator transition in VnO2n−1. J Solid State Chem 6:258–270CrossRefGoogle Scholar
  38. 38.
    Griffiths CH, Eastwood HK (1974) Influence of stoichiometry on the metal-semiconductor transition in vanadium dioxide. J Appl Phys 45:2201–2206CrossRefGoogle Scholar
  39. 39.
    Marezio M, McWhan DB, Remeika JP, Dernier PD (1972) Structural aspects of the metal-insulator transitions in Cr-doped VO2. Phys Rev B 5:2541–2551CrossRefGoogle Scholar
  40. 40.
    Draper JW (1847) On the production of light by heat. Philos Mag J Sci 30:345–359Google Scholar
  41. 41.
    Nelson A (2006) Co-refinement of multiple-contrast neutron/X-ray reflectivity data using MOTOFIT. J Appl Crystallogr 39:273–276CrossRefGoogle Scholar
  42. 42.
    Sun G, Cao X, Long S et al (2017) Optical and electrical performance of thermochromic V2O3 thin film fabricated by magnetron sputtering. Appl Phys Lett 111:1–5Google Scholar
  43. 43.
    Jorgensen JD, Beno MA, Hinks DG et al (1987) Oxygen ordering and the orthorhombic-to-tetragonal phase transition in YBa2Cu3O7−x. Phys Rev B 36:3608–3616CrossRefGoogle Scholar
  44. 44.
    Wuyts B, Vanacken J, Locquet J-P, et al (1990) Oxygen evolution in high-Tc superconductors. In: Proceedings of the NATO A.S.I. high temperature superconductivity. Kluwer, Dordrecht, Netherlands, pp 307–318Google Scholar
  45. 45.
    Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Matter 16:R829–R858CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Center for Advanced NanoscienceUniversity of California San DiegoLa JollaUSA
  2. 2.Unité Mixte de Physique, CNRS, ThalesUniversité Paris-Sud, Université Paris SaclayPalaiseauFrance

Personalised recommendations