Advertisement

Journal of Materials Science

, Volume 53, Issue 12, pp 9340–9349 | Cite as

MoS2-filled coating on flexible polyurethane foam via layer-by-layer assembly technique: flame-retardant and smoke suppression properties

  • Haifeng Pan
  • Qi Shen
  • Zinan Zhang
  • Bihao Yu
  • Yushi Lu
Polymers

Abstract

In the present work, a fire-blocking coating consisting of chitosan and molybdenum disulfide (MoS2) was firstly deposited onto flexible polyurethane (FPU) foam by the layer-by-layer assembly technique. With the MoS2-filled coating, the FPU foam could burn without melt dripping during the whole combustion and keep its shape after combustion, while the pure foam was consumed completely. The analysis by thermogravimetric analysis/infrared spectrometry indicated that MoS2-filled coating could obviously reduce the amount of organic gaseous pyrolysis products and toxic volatiles during thermal decomposition of the foam. The cone calorimeter results indicated that the FPU foam with 8.5 wt% coating showed great reduction in peak of heat release rate (70%), peak smoke production rate (62.4%) and total smoke released (33.3%). Such a significant improvement in flame-retardant and the smoke suppression properties for FPU foam could be attributed to the protective effect of MoS2-filled coating.

Notes

Acknowledgements

The work was financially supported by the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (CUG160608), National Natural Science Foundation of China (51703208).

Supplementary material

10853_2018_2199_MOESM1_ESM.mp4 (12 mb)
Supplementary material 1 (MP4 12246 kb)
10853_2018_2199_MOESM2_ESM.mp4 (12.1 mb)
Supplementary material 2 (MP4 12378 kb)

References

  1. 1.
    Liang SY, Neisius M, Mispreuve H, Naescher R, Gaan S (2012) Flame retardancy and thermal decomposition of flexible polyurethane foams: structural influence of organophosphorus compounds. Polym Degrad Stab 97:2428–2440CrossRefGoogle Scholar
  2. 2.
    Wolska A, Gozdzikiewicz M, Ryszkowska J (2012) Thermal and mechanical behaviour of flexible polyurethane foams modified with graphite and phosphorous fillers. J Mater Sci 47:5627–5634.  https://doi.org/10.1007/s10853-012-6433-z CrossRefGoogle Scholar
  3. 3.
    Lefebvre J, Bastin B, Bras ML, Duquesne S, Ritter C, Paleja R, Poutch F (2004) Flame spread of flexible polyurethane foam: comprehensive study. Polym Test 23:281–290CrossRefGoogle Scholar
  4. 4.
    Singh H, Jain A (2009) Ignition, combustion, toxicity, and fire retardancy of polyurethane foams: a comprehensive review. J Appl Polym Sci 111:1115–1143CrossRefGoogle Scholar
  5. 5.
    Denecker C, Liggat JJ, Snape CE (2006) Relationship between the thermal degradation chemistry and flammability of commercial flexible polyurethane foams. J Appl Polym Sci 100:3024–3033CrossRefGoogle Scholar
  6. 6.
    Boutin M, Lesage J, Ostiguy C, Pauluhnv J, Bertrand MJ (2004) Identification of the isocyanates generated during the thermal degradation of a polyurethane car paint. J Anal Appl Pyrolysis 71:791–802CrossRefGoogle Scholar
  7. 7.
    Berta M, Lindsay C, Pans G, Camino G (2004) Effect of chemical structure on combustion and thermal behaviour of polyurethane elastomer layered silicate nanocomposites. Polym Degrad Stab 71:791–802Google Scholar
  8. 8.
    Levchik SV, Weil ED (2004) Thermal decomposition, combustion and fire-retardancy of polyurethanes—a review of the recent literature. Polym Int 53:1585–1610CrossRefGoogle Scholar
  9. 9.
    Stapleton HM, Klosterhaus S, Eagle S, Fuh J, Meeker JD, Blum A, Webster TF (2009) Detection of organophosphate flame retardants in furniture foam and US house dust. Environ Sci Technol 43:7490–7495CrossRefGoogle Scholar
  10. 10.
    Freudenthal RI, Henrich RT (2000) Chronic toxicity and carcinogenic potential of tris-(1,3-dichloro-2-propyl) phosphate in Sprague-Dawley rat. Int J Toxicol 19:119–125CrossRefGoogle Scholar
  11. 11.
    Gaan S, Liang S, Mispreuve H, Perler H, Naescher R, Neisius M (2015) Flame retardant flexible polyurethane foams from novel DOPO-phosphonamidate additives. Polym Degrad Stab 113:180–188CrossRefGoogle Scholar
  12. 12.
    van der Veen I, de Boer J (2012) Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere 88:1119–1153CrossRefGoogle Scholar
  13. 13.
    Stapleton HM, Klosterhaus S, Keller A, Ferguson PL, van Bergen S, Cooper E, Webster TF, Blum A (2011) Identification of flame retardants in polyurethane foam collected from baby products. Environ Sci Technol 45:5323–5331CrossRefGoogle Scholar
  14. 14.
    Higginbotham AL, Lomeda JR, Morgan AB, Tour JM (2009) Graphite oxide flame-retardant polymer nanocomposites. ACS Appl Mater Interfaces 1:2256–2261CrossRefGoogle Scholar
  15. 15.
    Morgan AB (2006) Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems. Polym Adv Technol 17:206–217CrossRefGoogle Scholar
  16. 16.
    Alongi J, Frache A (2010) Flame retardancy properties of α-zirconium phosphate based composites. Polym Degrad Stab 95:1928–1933CrossRefGoogle Scholar
  17. 17.
    Matusinovic Z, Wilkie CA (2012) Fire retardancy and morphology of layered double hydroxide nanocomposites: a review. J Mater Chem 22:18701–18704CrossRefGoogle Scholar
  18. 18.
    Li YC, Schulz J, Grunlan JC (2009) Polyelectrolyte/nanosilicate thin-film assemblies: influence of pH on growth, mechanical behavior, and flammability. ACS Appl Mater Interfaces 1:2338–2347CrossRefGoogle Scholar
  19. 19.
    Li YC, Kim YS, Shields J, Davis R (2013) Controlling polyurethane foam flammability and mechanical behaviour by tailoring the composition of clay-based multilayer nanocoatings. J Mater Chem A 1:12987–12997CrossRefGoogle Scholar
  20. 20.
    Pan Y, Pan H, Yuan B, Hong N, Zhan J, Wang B, Hu Y (2015) Construction of organic–inorganic hybrid nano-coatings containing α-zirconium phosphate with high efficiency for reducing fire hazards of flexible polyurethane foam. Mater Chem Phys 163:107–115CrossRefGoogle Scholar
  21. 21.
    Li YC, Yang YH, Shields JR, Davis RD (2015) Layered double hydroxide-based fire resistant coatings for flexible polyurethane foam. Polymer 56:284–292CrossRefGoogle Scholar
  22. 22.
    Cain AA, Nolen CR, Li YC, Davis R, Grunlan JC (2013) Phosphorous-filled nanobrick wall multilayer thin film eliminates polyurethane melt dripping and reduces heat release associated with fire. Polym Degrad Stab 98:2645–2652CrossRefGoogle Scholar
  23. 23.
    Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135:10274–10277CrossRefGoogle Scholar
  24. 24.
    Breysse M, Geantet C, Afanasiev P, Blanchard J, Vrinat M (2008) Recent studies on the preparation, activation and design of active phases and supports of hydrotreating catalysts. Catal Today 130:3–13CrossRefGoogle Scholar
  25. 25.
    Yu L, Zhang P, Du Z (2000) Tribological behavior and structural change of the LB film of MoS2 nanoparticles coated with dialkyldithiophosphate. Surf Coat Technol 130:110–115CrossRefGoogle Scholar
  26. 26.
    Zhou XD, Wu DM, Shi HQ, Fu X, Hu ZS, Wang XB, Yan FY (2007) Study on the tribological properties of surfactant-modified MoS2 micrometer spheres as an additive in liquid paraffin. Tribol Int 40:863–868CrossRefGoogle Scholar
  27. 27.
    Santa Ana MA, Mirabal N, Benavente E, Gómez-Romero P, González G (2007) Electrochemical behavior of lithium intercalated in a molybdenum disulfide-crown ether. Electrochim Acta 53:1432–1438CrossRefGoogle Scholar
  28. 28.
    Jiang JW (2015) Graphene versus MoS2: a short review. Front Phys. 10:287–302CrossRefGoogle Scholar
  29. 29.
    Lattimer RP, Kroenke WJ (1981) The functional role of molybdenum trioxide as a smoke retarder additive in rigid poly (vinyl chloride). J Appl Polym Sci 26:1191–1210CrossRefGoogle Scholar
  30. 30.
    Stoeva S, Karaivanova M, Benev D (1992) Poly (vinyl chloride) composition. II. Study of the flammability and smoke-evolution of unplasticized poly (vinyl chloride) and fire-retardant additives. J Appl Polym Sci 46:119–127CrossRefGoogle Scholar
  31. 31.
    Zhou K, Yang W, Tang G, Wang B, Jiang S, Hu Y, Gui Z (2013) Comparative study on the thermal stability, flame retardancy and smoke suppression properties of polystyrene composites containing molybdenum disulfide and grapheme. RSC Adv 3:25030–25040CrossRefGoogle Scholar
  32. 32.
    Wang D, Song L, Zhou K, Yu X, Hu Y, Wang J (2015) Anomalous nano-barrier effects of ultrathin molybdenum disulfide nanosheets for improving the flame retardance of polymer nanocomposites. J Mater Chem A 3:14307–14317CrossRefGoogle Scholar
  33. 33.
    Feng X, Wang X, Xing W, Zhou K, Song L, Hu Y (2014) Liquid-exfoliated MoS2 by chitosan and enhanced mechanical and thermal properties of chitosan/MoS2 composites. Compos Sci Technol 93:76–82CrossRefGoogle Scholar
  34. 34.
    Du BX, Fang ZP (2010) The preparation of layered double hydroxide wrapped carbon nanotubes and their application as a flame retardant for polypropylene. Nanotechnology 21:315603CrossRefGoogle Scholar
  35. 35.
    Krämer RH, Zammarano M, Linteris GT, Gedde UW, Gilman WJ (2010) Heat release and structural collapse of flexible polyurethane foam. Polym Degrad Stabil 95:1115–1122CrossRefGoogle Scholar
  36. 36.
    Pan Y, Zhan J, Pan H, Wang W, Ge H, Song L, Hu Y (2015) A novel and effective method to fabricate flame retardant and smoke suppressed flexible polyurethane foam. RSC Adv 5:67878–67885CrossRefGoogle Scholar
  37. 37.
    Dong YY, Gui Z, Hu Y, Wu Y, Jiang SH (2012) The influence of titanate nanotube on the improved thermal properties and the smoke suppression in poly (methyl methacrylate). J Hazard Mater 209:34–39CrossRefGoogle Scholar
  38. 38.
    Chen XL, Huo LL, Jiao CM, Li SX (2013) TG–FTIR characterization of volatile compounds from flame retardant polyurethane foams materials. J Anal Appl Pyrolysis 100:186–191CrossRefGoogle Scholar
  39. 39.
    Ghosh B, Chellappan KV, Urban MW (2011) Self-healing inside a scratch of oxetane-substituted chitosan-polyurethane (OXE-CHI-PUR) networks. J Mater Chem 21:14473–14486CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of EngineeringChina University of GeosciencesWuhanPeople’s Republic of China

Personalised recommendations