Advertisement

Journal of Materials Science

, Volume 53, Issue 12, pp 9180–9190 | Cite as

Surface passivation with nitrogen-doped carbon dots for improved perovskite solar cell performance

  • Yifang Wang
  • Jie Zhang
  • Shuhuang Chen
  • Haoyu Zhang
  • Ligui Li
  • Zhiyong Fu
Energy materials

Abstract

Undercoordinated lead cations and halide anions on the surface of perovskite layer can form surface trap states and cause electronic disorders which reduce the performance of perovskite solar cells. Nitrogen-doped carbon dots (NCDs) that have rich nitrogen- and oxygen-containing functional groups can effectively interact with the unsaturated metal sites and halide anions on the surface and boundaries of perovskite grains. Herein, low-cost NCDs are utilized as efficient additives to passivate the surface of a solution-processed CH3NH3PbI3 perovskite film, which remarkably reduce charge carrier recombination, as evidenced by the results of time-resolved photoluminescence and electrochemical impedance spectrum measurements. FTIR spectra indicate the formation of hydrogen bonds between the undercoordinated iodine ions on perovskite grains and hydroxyl as well as nitrogenous groups of NCDs. In addition, NCDs additives also help increase interfacial charge transfer from perovskite to electron-transporting layer, leading to an improvement in power conversion efficiency for the solar cell device from 12.12 ± 0.28% (standard cell fabricated in same conditions) to 15.93 ± 0.15%.

Notes

Acknowledgements

The authors thank the CPSF (2016M602456), the NSFC (51402111, 21703070, 21573076), Guangdong Innovative and Entrepreneurial Research Team Program (2014ZT05N200), the NCET (130209), NSF (Guangdong, 2015A030312007), FRFCU (2017BQ064) and SRP (2017s10) for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2018_2190_MOESM1_ESM.docx (1 mb)
Supplementary material 1 (DOCX 1062 kb)

References

  1. 1.
    Meng FY, Zhang CY, Chen DC, Zhu WG, Yip HL, Su SJ (2017) Combined optimization of emission layer morphology and hole-transport layer for enhanced performance of perovskite light-emitting diodes. J Mater Chem C 5:6169–6175CrossRefGoogle Scholar
  2. 2.
    Guo Z, Wan Y, Yang MJ, Snaider J, Zhu K, Huang LB (2017) Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science 356:59–62CrossRefGoogle Scholar
  3. 3.
    Sutherland BR, Sargent EH (2016) Perovskite photonic sources. Nat Photonics 10:295–302CrossRefGoogle Scholar
  4. 4.
    Leblanc A, Mercier N, Allain M, Dittmer J, Fernandez V, Pauporté T (2017) Lead- and iodide-deficient (CH3NH3)PbI3(d-MAPI): the bridge between 2D and 3D hybrid perovskites. Angew Chem Int Ed 56:16067–16072CrossRefGoogle Scholar
  5. 5.
    Wang PJ, Shao ZP, Ulfa M, Pauporte T (2017) Insights into the hole blocking layer effect on the perovskite solar cell performance and impedance response. J Phys Chem C 121:9131–9141CrossRefGoogle Scholar
  6. 6.
    Zhang W, Eperon GE, Snaith HJ (2016) Metal halide perovskites for energy applications. Nat Energy 1:16048CrossRefGoogle Scholar
  7. 7.
    Lee SJ, Park JH, Lee BR, Jung ED, Yu JC, Nuzzo DD, Friend RH, Song MH (2017) Amine-based passivating materials for enhanced optical properties and performance of organic-inorganic perovskites in light-emitting diodes. J Phys Chem Lett 8:1784–1792CrossRefGoogle Scholar
  8. 8.
    La-Placa MG, Longo G, Babaei A, Martinez-Sarti L, Sessolo M, Bolink HJ (2017) Photoluminescence quantum yield exceeding 80% in low dimensional perovskite thin-films via passivation control. Chem Commun 53:8707–8710CrossRefGoogle Scholar
  9. 9.
    Gao L, Zeng K, Guo JS, Ge C, Du J, Zhao Y, Chen C, Deng H et al (2016) Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity and polarization sensitivity. Nano Lett 16:7446–7454CrossRefGoogle Scholar
  10. 10.
    Zhang W, Pathak S, Sakai N, Stergiopoulos T, Nayak PK, Noel NK, Haghighirad AA, Burlakov VM et al (2015) Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells. Nat Commun 6:10030CrossRefGoogle Scholar
  11. 11.
    Rong Y, Liu L, Mei A, Li X, Han H (2015) Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells. Adv Energy Mater 5:1501066CrossRefGoogle Scholar
  12. 12.
    Ghosh S, Pal SK, Karki KJ, Pullerit T (2017) Ion migration heals trapping centers in CH3NH3PbBr3 perovskite. Acs Energy Lett 2:2133–2139CrossRefGoogle Scholar
  13. 13.
    Li X, Bi DQ, Yi CY, Decoppe JD, Luo JS, Zakeeruddin SM, Hagfeldt A, Gratzel M (2016) A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 353:58–62CrossRefGoogle Scholar
  14. 14.
    Wang L, Liu F, Liu TJ, Wang JW, Cai XY, Wang GT, Ma TL, Jiang C (2016) Pinhole-free perovskite films by methylamine iodide solution-assisted repair for high-efficiency photovoltaics under ambient conditions. ACS Appl Mater Interfaces 8:30920–30925CrossRefGoogle Scholar
  15. 15.
    Jacobs DL, Zang L (2016) Thermally induced recrystallization of MAPbI3 perovskite under methylamine atmosphere: an approach to fabricating large uniform crystalline grains. Chem Commun 52:10743–10746CrossRefGoogle Scholar
  16. 16.
    Chiang CH, Wu CG (2016) Bulk heterojunction perovskite-PCBM solar cells with high fill factor. Nat Photonics 10:196–200CrossRefGoogle Scholar
  17. 17.
    Haruyama J, Sodeyama K, Han LY, Tateyama Y (2016) Surface properties of CH3NH3PbI3 for perovskite solar cells. Acc Chem Res 49:554–561CrossRefGoogle Scholar
  18. 18.
    Seo J, Noh JH, Seok SI (2016) Rational strategies for efficient perovskite solar cells. Acc Chem Res 49:562–572CrossRefGoogle Scholar
  19. 19.
    Tan HR, Jain A, Voznyy O, Lan XZ, García de Arquer FP, Fan JZ, Quintero-Bermudez R, Yuan MJ et al (2017) Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355:722–726CrossRefGoogle Scholar
  20. 20.
    Xu J, Buin A, Ip AH, Li W, Voznyy O, Comin R, Yuan M, Jeon S et al (2015) Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat Commun 6:7081CrossRefGoogle Scholar
  21. 21.
    Abate A, Saliba M, Hollman DJ, Stranks SD, Wojciechowski K, Avolio R, Grancini G, Petrozza A, Snaith HJ (2014) Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells. Nano Lett 14:3247–3254CrossRefGoogle Scholar
  22. 22.
    Ye SY, Rao HX, Zhao ZR, Zhang LJ, Bao HL, Sun WH, Li YL, Gu FD et al (2017) A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I. J Am Chem Soc 139:7504–7512CrossRefGoogle Scholar
  23. 23.
    Peng J, Wu Y, Ye W, Jacobs DA, Shen H, Fu X, Wan Y, Duong T et al (2017) Interface passivation using ultrathin polymer–fullerene films for high-efficiency perovskite solar cells with negligible hysteresis. Energy Environ Sci 10:1792–1800CrossRefGoogle Scholar
  24. 24.
    Chaudhary B, Kulkarni A, Jena AK, Ikegami M, Udagawa Y, Kunugita H, Ema K, Miyasaka T (2017) Poly(4-vinylpyridine)-based interfacial passivation to enhance voltage and moisture stability of lead halide perovskite solar cells. Chemsuschem 10:2473–2479CrossRefGoogle Scholar
  25. 25.
    Noel NK, Abate A, Stranks SD, Parrott ES, Burlakov VM, Goriely A, Snaith HJ (2014) Enhanced photoluminescence and solar cell performance via lewis base passivation of organic-inorganic lead halide perovskites. ACS Nano 8:9815–9821CrossRefGoogle Scholar
  26. 26.
    Wang Y, Wang HY, Yu M, Fu LM, Qin YJ, Zhang JP, Ai XC (2015) Trap-limited charge recombination in intrinsic perovskite film and meso-superstructured perovskite solar cells and the passivation effect of the hole-transport material on trap states. Phys Chem Chem Phys 17:29501–29506CrossRefGoogle Scholar
  27. 27.
    Wang F, Geng W, Zhou Y, Fang HH, Tong CJ, Loi MA, Liu LM, Zhao N (2016) Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells. Adv Mater 28:9986–9992CrossRefGoogle Scholar
  28. 28.
    Wen XR, Wu JM, Gao D, Lin CJ (2016) Interfacial engineering with amino-functionalized graphene for efficient perovskite solar cells. J Mater Chem A 4:13482–13487CrossRefGoogle Scholar
  29. 29.
    Hadadian M, Correa-Baena JP, Goharshadi EK, Ummadisingu A, Seo JY, Luo JS, Gholipour S, Zakeeruddin SM et al (2016) Enhancing efficiency of perovskite solar cells via N-doped graphene: crystal modification and surface passivation. Adv Mater 28:8681–8686CrossRefGoogle Scholar
  30. 30.
    Shao YH, Xiao ZG, Bi C, Yuan YB, Huang JS (2014) Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat Commun 5:5784CrossRefGoogle Scholar
  31. 31.
    Tseng WS, Jao MH, Hsu CC, Huang JS, Wu CI, Yeh NC (2017) Stabilization of hybrid perovskite CH3NH3PbI3 thin films by graphene passivation. Nanoscale 9:19227–19235CrossRefGoogle Scholar
  32. 32.
    Lin LP, Rong MC, Lu SS, Song XH, Zhong YX, Yan JW, Wang YR, Chen X (2015) A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2,4,6-trinitrophenol in aqueous solution. Nanoscale 7:1872–1878CrossRefGoogle Scholar
  33. 33.
    Wang CX, Xu ZZ, Cheng H, Lin HH, Humphrey MG, Zhang C (2015) A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature. Carbon 82:87–95CrossRefGoogle Scholar
  34. 34.
    Peng H, Li Y, Jiang CL, Luo CH, Qi RJ, Huang R, Duan CG, Travas-Sejdic J (2016) Tuning the properties of luminescent nitrogen-doped carbon dots by reaction precursors. Carbon 100:386–394CrossRefGoogle Scholar
  35. 35.
    Zhu SJ, Meng QN, Wang L, Zhang JH, Song YB, Jin H, Zhang K, Sun HC, Wang HY, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed 52:3953–3957CrossRefGoogle Scholar
  36. 36.
    Lim SY, Shen W, Gao ZQ (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381CrossRefGoogle Scholar
  37. 37.
    Im JH, Lee CR, Lee JW, Park SW, Park NG (2011) 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3:4088–4093CrossRefGoogle Scholar
  38. 38.
    Tan AD, Wang YF, Fu ZY, Tsiakaras P, Liang ZX (2017) Highly effective oxygen reduction reaction electrocatalysis: nitrogen-doped hierarchically mesoporous carbon derived from interpenetrated nonporous metal-organic frameworks. Appl Catal B Environ 218:260–266CrossRefGoogle Scholar
  39. 39.
    Li B, Sun XY, Su DS (2015) Calibration of the basic strength of the nitrogen groups on the nanostructured carbon materials. Phys Chem Chem Phys 17:6691–6694CrossRefGoogle Scholar
  40. 40.
    Li ZF, Ma GQ, Ge R, Qin F, Dong X, Meng W, Liu TF, Tong JH, Jiang FY, Zhou YF, Li K, Min X, Huo KF, Zhou YH (2016) Free-standing conducting polymer films for high-performance energy devices. Angew Chem Int Ed 55:979–982CrossRefGoogle Scholar
  41. 41.
    Zhou YH, Fuentes-Hernandez C, Shim J, Meyer J, Giordano AJ, Li H, Winget P, Papadopoulos T et al (2012) A universal method to produce low-work function electrodes for organic electronics. Science 336:327–332CrossRefGoogle Scholar
  42. 42.
    Zhao XL, Yang DL, Lv HY, Yin L, Yang XN (2013) New benzotrithiophene derivative with a broad band gap for high performance polymer solar cells. Polym Chem 4:57–60CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Key Lab of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China
  2. 2.Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and EnergySouth China University of TechnologyGuangzhouPeople’s Republic of China
  3. 3.State Key Laboratory of Photocatalysis on Energy and EnvironmentFuzhou UniversityFuzhouPeople’s Republic of China

Personalised recommendations