Skip to main content
Log in

Surface passivation with nitrogen-doped carbon dots for improved perovskite solar cell performance

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Undercoordinated lead cations and halide anions on the surface of perovskite layer can form surface trap states and cause electronic disorders which reduce the performance of perovskite solar cells. Nitrogen-doped carbon dots (NCDs) that have rich nitrogen- and oxygen-containing functional groups can effectively interact with the unsaturated metal sites and halide anions on the surface and boundaries of perovskite grains. Herein, low-cost NCDs are utilized as efficient additives to passivate the surface of a solution-processed CH3NH3PbI3 perovskite film, which remarkably reduce charge carrier recombination, as evidenced by the results of time-resolved photoluminescence and electrochemical impedance spectrum measurements. FTIR spectra indicate the formation of hydrogen bonds between the undercoordinated iodine ions on perovskite grains and hydroxyl as well as nitrogenous groups of NCDs. In addition, NCDs additives also help increase interfacial charge transfer from perovskite to electron-transporting layer, leading to an improvement in power conversion efficiency for the solar cell device from 12.12 ± 0.28% (standard cell fabricated in same conditions) to 15.93 ± 0.15%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Meng FY, Zhang CY, Chen DC, Zhu WG, Yip HL, Su SJ (2017) Combined optimization of emission layer morphology and hole-transport layer for enhanced performance of perovskite light-emitting diodes. J Mater Chem C 5:6169–6175

    Article  Google Scholar 

  2. Guo Z, Wan Y, Yang MJ, Snaider J, Zhu K, Huang LB (2017) Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science 356:59–62

    Article  Google Scholar 

  3. Sutherland BR, Sargent EH (2016) Perovskite photonic sources. Nat Photonics 10:295–302

    Article  Google Scholar 

  4. Leblanc A, Mercier N, Allain M, Dittmer J, Fernandez V, Pauporté T (2017) Lead- and iodide-deficient (CH3NH3)PbI3(d-MAPI): the bridge between 2D and 3D hybrid perovskites. Angew Chem Int Ed 56:16067–16072

    Article  Google Scholar 

  5. Wang PJ, Shao ZP, Ulfa M, Pauporte T (2017) Insights into the hole blocking layer effect on the perovskite solar cell performance and impedance response. J Phys Chem C 121:9131–9141

    Article  Google Scholar 

  6. Zhang W, Eperon GE, Snaith HJ (2016) Metal halide perovskites for energy applications. Nat Energy 1:16048

    Article  Google Scholar 

  7. Lee SJ, Park JH, Lee BR, Jung ED, Yu JC, Nuzzo DD, Friend RH, Song MH (2017) Amine-based passivating materials for enhanced optical properties and performance of organic-inorganic perovskites in light-emitting diodes. J Phys Chem Lett 8:1784–1792

    Article  Google Scholar 

  8. La-Placa MG, Longo G, Babaei A, Martinez-Sarti L, Sessolo M, Bolink HJ (2017) Photoluminescence quantum yield exceeding 80% in low dimensional perovskite thin-films via passivation control. Chem Commun 53:8707–8710

    Article  Google Scholar 

  9. Gao L, Zeng K, Guo JS, Ge C, Du J, Zhao Y, Chen C, Deng H et al (2016) Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity and polarization sensitivity. Nano Lett 16:7446–7454

    Article  Google Scholar 

  10. Zhang W, Pathak S, Sakai N, Stergiopoulos T, Nayak PK, Noel NK, Haghighirad AA, Burlakov VM et al (2015) Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells. Nat Commun 6:10030

    Article  Google Scholar 

  11. Rong Y, Liu L, Mei A, Li X, Han H (2015) Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells. Adv Energy Mater 5:1501066

    Article  Google Scholar 

  12. Ghosh S, Pal SK, Karki KJ, Pullerit T (2017) Ion migration heals trapping centers in CH3NH3PbBr3 perovskite. Acs Energy Lett 2:2133–2139

    Article  Google Scholar 

  13. Li X, Bi DQ, Yi CY, Decoppe JD, Luo JS, Zakeeruddin SM, Hagfeldt A, Gratzel M (2016) A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 353:58–62

    Article  Google Scholar 

  14. Wang L, Liu F, Liu TJ, Wang JW, Cai XY, Wang GT, Ma TL, Jiang C (2016) Pinhole-free perovskite films by methylamine iodide solution-assisted repair for high-efficiency photovoltaics under ambient conditions. ACS Appl Mater Interfaces 8:30920–30925

    Article  Google Scholar 

  15. Jacobs DL, Zang L (2016) Thermally induced recrystallization of MAPbI3 perovskite under methylamine atmosphere: an approach to fabricating large uniform crystalline grains. Chem Commun 52:10743–10746

    Article  Google Scholar 

  16. Chiang CH, Wu CG (2016) Bulk heterojunction perovskite-PCBM solar cells with high fill factor. Nat Photonics 10:196–200

    Article  Google Scholar 

  17. Haruyama J, Sodeyama K, Han LY, Tateyama Y (2016) Surface properties of CH3NH3PbI3 for perovskite solar cells. Acc Chem Res 49:554–561

    Article  Google Scholar 

  18. Seo J, Noh JH, Seok SI (2016) Rational strategies for efficient perovskite solar cells. Acc Chem Res 49:562–572

    Article  Google Scholar 

  19. Tan HR, Jain A, Voznyy O, Lan XZ, García de Arquer FP, Fan JZ, Quintero-Bermudez R, Yuan MJ et al (2017) Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355:722–726

    Article  Google Scholar 

  20. Xu J, Buin A, Ip AH, Li W, Voznyy O, Comin R, Yuan M, Jeon S et al (2015) Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat Commun 6:7081

    Article  Google Scholar 

  21. Abate A, Saliba M, Hollman DJ, Stranks SD, Wojciechowski K, Avolio R, Grancini G, Petrozza A, Snaith HJ (2014) Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells. Nano Lett 14:3247–3254

    Article  Google Scholar 

  22. Ye SY, Rao HX, Zhao ZR, Zhang LJ, Bao HL, Sun WH, Li YL, Gu FD et al (2017) A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I. J Am Chem Soc 139:7504–7512

    Article  Google Scholar 

  23. Peng J, Wu Y, Ye W, Jacobs DA, Shen H, Fu X, Wan Y, Duong T et al (2017) Interface passivation using ultrathin polymer–fullerene films for high-efficiency perovskite solar cells with negligible hysteresis. Energy Environ Sci 10:1792–1800

    Article  Google Scholar 

  24. Chaudhary B, Kulkarni A, Jena AK, Ikegami M, Udagawa Y, Kunugita H, Ema K, Miyasaka T (2017) Poly(4-vinylpyridine)-based interfacial passivation to enhance voltage and moisture stability of lead halide perovskite solar cells. Chemsuschem 10:2473–2479

    Article  Google Scholar 

  25. Noel NK, Abate A, Stranks SD, Parrott ES, Burlakov VM, Goriely A, Snaith HJ (2014) Enhanced photoluminescence and solar cell performance via lewis base passivation of organic-inorganic lead halide perovskites. ACS Nano 8:9815–9821

    Article  Google Scholar 

  26. Wang Y, Wang HY, Yu M, Fu LM, Qin YJ, Zhang JP, Ai XC (2015) Trap-limited charge recombination in intrinsic perovskite film and meso-superstructured perovskite solar cells and the passivation effect of the hole-transport material on trap states. Phys Chem Chem Phys 17:29501–29506

    Article  Google Scholar 

  27. Wang F, Geng W, Zhou Y, Fang HH, Tong CJ, Loi MA, Liu LM, Zhao N (2016) Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells. Adv Mater 28:9986–9992

    Article  Google Scholar 

  28. Wen XR, Wu JM, Gao D, Lin CJ (2016) Interfacial engineering with amino-functionalized graphene for efficient perovskite solar cells. J Mater Chem A 4:13482–13487

    Article  Google Scholar 

  29. Hadadian M, Correa-Baena JP, Goharshadi EK, Ummadisingu A, Seo JY, Luo JS, Gholipour S, Zakeeruddin SM et al (2016) Enhancing efficiency of perovskite solar cells via N-doped graphene: crystal modification and surface passivation. Adv Mater 28:8681–8686

    Article  Google Scholar 

  30. Shao YH, Xiao ZG, Bi C, Yuan YB, Huang JS (2014) Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat Commun 5:5784

    Article  Google Scholar 

  31. Tseng WS, Jao MH, Hsu CC, Huang JS, Wu CI, Yeh NC (2017) Stabilization of hybrid perovskite CH3NH3PbI3 thin films by graphene passivation. Nanoscale 9:19227–19235

    Article  Google Scholar 

  32. Lin LP, Rong MC, Lu SS, Song XH, Zhong YX, Yan JW, Wang YR, Chen X (2015) A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2,4,6-trinitrophenol in aqueous solution. Nanoscale 7:1872–1878

    Article  Google Scholar 

  33. Wang CX, Xu ZZ, Cheng H, Lin HH, Humphrey MG, Zhang C (2015) A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature. Carbon 82:87–95

    Article  Google Scholar 

  34. Peng H, Li Y, Jiang CL, Luo CH, Qi RJ, Huang R, Duan CG, Travas-Sejdic J (2016) Tuning the properties of luminescent nitrogen-doped carbon dots by reaction precursors. Carbon 100:386–394

    Article  Google Scholar 

  35. Zhu SJ, Meng QN, Wang L, Zhang JH, Song YB, Jin H, Zhang K, Sun HC, Wang HY, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed 52:3953–3957

    Article  Google Scholar 

  36. Lim SY, Shen W, Gao ZQ (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381

    Article  Google Scholar 

  37. Im JH, Lee CR, Lee JW, Park SW, Park NG (2011) 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3:4088–4093

    Article  Google Scholar 

  38. Tan AD, Wang YF, Fu ZY, Tsiakaras P, Liang ZX (2017) Highly effective oxygen reduction reaction electrocatalysis: nitrogen-doped hierarchically mesoporous carbon derived from interpenetrated nonporous metal-organic frameworks. Appl Catal B Environ 218:260–266

    Article  Google Scholar 

  39. Li B, Sun XY, Su DS (2015) Calibration of the basic strength of the nitrogen groups on the nanostructured carbon materials. Phys Chem Chem Phys 17:6691–6694

    Article  Google Scholar 

  40. Li ZF, Ma GQ, Ge R, Qin F, Dong X, Meng W, Liu TF, Tong JH, Jiang FY, Zhou YF, Li K, Min X, Huo KF, Zhou YH (2016) Free-standing conducting polymer films for high-performance energy devices. Angew Chem Int Ed 55:979–982

    Article  Google Scholar 

  41. Zhou YH, Fuentes-Hernandez C, Shim J, Meyer J, Giordano AJ, Li H, Winget P, Papadopoulos T et al (2012) A universal method to produce low-work function electrodes for organic electronics. Science 336:327–332

    Article  Google Scholar 

  42. Zhao XL, Yang DL, Lv HY, Yin L, Yang XN (2013) New benzotrithiophene derivative with a broad band gap for high performance polymer solar cells. Polym Chem 4:57–60

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the CPSF (2016M602456), the NSFC (51402111, 21703070, 21573076), Guangdong Innovative and Entrepreneurial Research Team Program (2014ZT05N200), the NCET (130209), NSF (Guangdong, 2015A030312007), FRFCU (2017BQ064) and SRP (2017s10) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Zhang, Ligui Li or Zhiyong Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1062 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, J., Chen, S. et al. Surface passivation with nitrogen-doped carbon dots for improved perovskite solar cell performance. J Mater Sci 53, 9180–9190 (2018). https://doi.org/10.1007/s10853-018-2190-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2190-y

Keywords

Navigation