Advertisement

Journal of Materials Science

, Volume 53, Issue 12, pp 9232–9242 | Cite as

Thermodynamic properties of Ag–Au–Pd alloys measured by a solid-state EMF method

  • Imam Santoso
  • Pekka Taskinen
Metals
  • 183 Downloads

Abstract

Although the Ag–Au–Pd system is crucial for several industrial applications and for the research on fundamental physics, no thermodynamic data on this ternary system at low temperatures have been reported in the literature. In the present study, activities of silver are directly measured by employing a solid-state EMF method, by using AgI as the solid electrolyte. The EMF was determined using a galvanic cell \( \left( - \right){\text{Pt}}\left| {\text{C}} \right.\left| {\text{Ag}} \right|{\text{AgI}}\left| {{\text{Ag-Au-Pd alloy}}} \right|{\text{C}}\left| {{\text{Pt}}\left( + \right)} \right. \), which produced novel experimental data on the thermodynamic properties of Ag–Au–Pd alloys. Darken method was used to calculate integral excess thermodynamic properties from the data. New thermodynamic characteristics, such as integral excess mixing Gibbs energy, entropy and enthalpy of the Ag–Au–Pd alloys, have been generated in a temperature range of 475 and 675 K. Isoactivity lines of silver in the system have been drawn throughout the Gibbs triangle. Thermodynamic properties of the binary Au–Pd alloys have been compared with the previous investigations.

Notes

Acknowledgements

The authors are indebted to Indonesian Government that provides the LPDP scholarship. The ARVI program of Finland (CLIC Innovation OY) for funding this research at Aalto University, Finland, is also greatly acknowledged.

References

  1. 1.
    Ziya AB, Abbas T (2005) Kinetics of short-range order formation in the ternary Au–Ag–Pd alloys. Mater Chem Phys 91:442–446CrossRefGoogle Scholar
  2. 2.
    Norman N, Warren BE (1951) X-Ray measurement of short range order in Ag–Au. J Appl Phys 22:483–486CrossRefGoogle Scholar
  3. 3.
    Drost E, Hausselt J (1992) Uses of gold in jewellery. Interdiscip Sci Rev 17:271–280CrossRefGoogle Scholar
  4. 4.
    Kempf B, Hausselt J (1992) Gold, its alloys and their uses in dentistry. Interdiscip Sci Rev 17:251–260CrossRefGoogle Scholar
  5. 5.
    Kempf B, Schmauder S (1998) Thermodynamic modelling of precious metals alloys. Gold Bull 31:51–57CrossRefGoogle Scholar
  6. 6.
    Fernández JL, Walsh DA, Bard AJ (2005) Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy. M–Co (M: Pd, Ag, Au). J Am Chem Soc 127:357–365CrossRefGoogle Scholar
  7. 7.
    Niemi L, Minni E, Ivaska A (1986) An electrochemical and multispectroscopic study of corrosion of Ag–Pd–Cu–Au alloys. J Dent Res 65:888–891CrossRefGoogle Scholar
  8. 8.
    Höhn R, Herzig C (1986) Direct determination of thermodynamic activities of gold in the systems gold–palladium and gold–silver–palladium. Z Metallkd 77:291–297Google Scholar
  9. 9.
    Nemilov VA, Rudnitsky AA, Vidusova TA (1946) Investigation of the Au–Pd–Ag system. Izvest Sekt Platiny 20:225–239Google Scholar
  10. 10.
    Miane JM, Gaune-Escard M, Bros JP (1977) Liquidus and solidus surfaces of the Ag–Au–Pd equilibrium phase diagram. High Temp High Press 9:465–469Google Scholar
  11. 11.
    Effenberg G, Ilyenko S (2006) Noble Metal Systems. Selected Systems from Ag–Al–Zn to Rh–Ru–Sc. Landolt–Börnstein—Group IV Physical Chemistry (Numerical Data and Functional Relationships in Science and Technology), vol 11B. Springer, Berlin, pp 50–52Google Scholar
  12. 12.
    Avarmaa K, Johto H, Taskinen P (2016) Distribution of precious metals (Ag, Au, Pd, Pt, and Rh) between copper matte and iron silicate slag. Metall Mater Trans B 47:244–255CrossRefGoogle Scholar
  13. 13.
    Darken LS (1950) Application of the Gibbs–Duhem equation to ternary and multicomponent systems. J Am Chem Soc 72:2909–2914CrossRefGoogle Scholar
  14. 14.
    Elliott JF, Chipman J (1951) The thermodynamic properties of liquid ternary cadmium solutions. J Am Chem Soc 73:2682–2693CrossRefGoogle Scholar
  15. 15.
    Zheng M, Kozuka Z (1987) Thermodynamics study on liquid In–Bi–Pb ternary alloys. T Jpn I Met 28:925–933CrossRefGoogle Scholar
  16. 16.
    Osadchii EG, Korepanov YI, Ionov KA (2011) Thermodynamic properties of Agx–Au1−x solid solution at 298–673 K and pressure of 1 atm, Vestn Otd nauk Zemle 3Google Scholar
  17. 17.
    White JL, Orr RL, Hultgren R (1957) The thermodynamic properties of silver–gold alloys. Acta Mater 5:747–760CrossRefGoogle Scholar
  18. 18.
    Fischbach H (1980) EMF measurements on Ag–Au-alloys employing Ag-beta-alumina. Z Metallkund 71:448–450Google Scholar
  19. 19.
    Kubaschcwski O, Huchler O (1948) Über die Verwendung von Glas als Elektrolyt bei Messungen elektromotorischer Kräfte an Legierungen. Zur Thermochemie der Legierungen, Z Elektrochem 52:170–177Google Scholar
  20. 20.
    Feng D, Taskinen P (2014) Thermodynamic properties of silver–palladium alloys determined by a solid state electrochemical method. J Mater Sci 49:5790–5798.  https://doi.org/10.1007/s10853-014-8310-4 CrossRefGoogle Scholar
  21. 21.
    Darby JB (1966) The relative heats of formation of solid gold–palladium alloys. Acta Mater 14:265–270CrossRefGoogle Scholar
  22. 22.
    Pratt JN (1960) The thermodynamic properties of silver–palladium alloys. Trans Faraday Soc 56:975–987CrossRefGoogle Scholar
  23. 23.
    Hayes FH, Kubaschewski O (1971) The heats of formation in the system gold–platinum–palladium. Met Sci J 5:37–40CrossRefGoogle Scholar
  24. 24.
    Okamoto H, Massalski TB (1985) The Au − Pd (gold–palladium) system. Bull Alloy Phase Diagr 6:229–235CrossRefGoogle Scholar
  25. 25.
    Tomiska J (1990) Computer-aided thermodynamics of solid Au–Pd alloys by knudsen cell mass spectrometry and calculation of the phase diagram. Z Metallkund 81:912–918Google Scholar
  26. 26.
    Sluiter MH, Colinet C, Pasturel A (2006) Ab initio calculation of the phase stability in Au–Pd and Ag–Pt alloys. Phys Rev B 73:174204CrossRefGoogle Scholar
  27. 27.
    Aspiala M, Taskinen P (2016) Thermodynamic study of the Ag–Sb–Te system with an advanced EMF method. J Chem Thermodyn 93:261–266CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical Engineering, Metallurgical Thermodynamic and Modelling GroupAalto UniversityEspooFinland
  2. 2.Department of Metallurgical EngineeringInstitut Teknologi BandungBandungIndonesia

Personalised recommendations