Advertisement

Journal of Materials Science

, Volume 53, Issue 12, pp 8844–8854 | Cite as

Dual relaxation behaviors and large electrostrictive properties of Bi0.5Na0.5TiO3–Sr0.85Bi0.1TiO3 ceramics

  • Jun Wang
  • Changrong Zhou
  • Qingning Li
  • Weidong Zeng
  • Jiwen Xu
  • Guohua Chen
  • Changlai Yuan
  • Guanghui Rao
Ceramics
  • 331 Downloads

Abstract

Lead-free ceramics (1 − x)Bi0.5Na0.5TiO3xSr0.85Bi0.1TiO3 (BNT–xSBT, x = 0.4, 0.5, 0.6 and 0.7) were prepared by a solid-state reaction process. Coexistence of ferroelectric relaxation at low temperature and Maxwell–Wagner dielectric relaxation at high temperature was revealed for the first time in this system. Meanwhile, hysteresis-free PE loops combined with a very high piezoelectric strain coefficient (d33) of 1658 pC/N concurrently with large electrostrictive coefficient Q = 0.287 m4C−2 were achieved. The ferroelectric relaxor behavior and large electrostrictive strain might be linked to easy reorientation and reversal of ergodic PNRs and the combined effect of Bi off-center position and lone pair electrons.

Notes

Acknowledgements

This work was supported by the National Nature Science Foundation of China (61561015, 11564007 and 11664006) and the Natural Science Foundation of Guangxi (2017GXNSFDA198024 and 2016GXNSFAA 380069).

References

  1. 1.
    Rödel J, Webber KG, Dittmer R, Jo W, Kimura M, Damjanovic D (2015) Transferring lead-free piezoelectric ceramics into application. J Eur Ceram Soc 35(6):1659–1681CrossRefGoogle Scholar
  2. 2.
    Rödel J, Jo W, Seifert KTP, Anton EM, Granzow T (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92(6):1153–1177CrossRefGoogle Scholar
  3. 3.
    Liu D, Tian CY, Ma CG, Luo LH, Tang YX, Wang T, Shi WZ, Sun DZ, Wang FF (2016) Composition, electric-field and temperature induced domain evolution in lead-free Bi0.5Na0.5TiO3–BaTiO3–SrTiO3 solid solutions by piezoresponse force microscopy. Scr Mater 123:64–68CrossRefGoogle Scholar
  4. 4.
    Rao BN, Senyshyn A, Olivi L, Sathe V, Ranjan R (2016) Maintaining local displacive disorders in Na0.5Bi0.5TiO3 piezoceramics by K0.5Bi0.5TiO3 substitution. J Eur Ceram Soc 36(8):1961–1972CrossRefGoogle Scholar
  5. 5.
    Khatua DK, Mehrotra T, Mishra A, Majumdar B, Senyshyn A, Ranjan R (2017) Anomalous influence of grain size on the global structure, ferroelectric and piezoelectric response of Na0.5Bi0.5TiO3. Acta Mater 134:177–187CrossRefGoogle Scholar
  6. 6.
    Li M, Pietrowski MJ, Souza RAD, Zhang H, Reaney IM, Cook SN, Kilner JA, Sinclair DC (2014) A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3. Nat Mater 13(1):31–35CrossRefGoogle Scholar
  7. 7.
    Hong CH, Kim HP, Choi BY, Han HS, Son JS, Ahn CW, Jo W (2016) Lead-free piezoceramics—where to move on. J Materiomics 2(1):1–24CrossRefGoogle Scholar
  8. 8.
    Li LL, Hao JG, Xu ZJ, Li W, Chu RQ (2016) 0.46% unipolar strain in lead-free BNT-BT system modified with Al and Sb. Mater Lett 184:152–156CrossRefGoogle Scholar
  9. 9.
    Liu X, Tan X (2016) Giant strain with low cycling degradation in Ta-doped [Bi1/2(Na0.8K0.2)1/2]TiO3 lead-free ceramics. J Appl Phys 120(3):71–94CrossRefGoogle Scholar
  10. 10.
    Hao J, Shen B, Zhai J, Liu C (2013) Switching of morphotropic phase boundary and large strain response in lead-free ternary (Bi0.5Na0.5)TiO3–(K0.5Bi0.5)TiO3–(K0.5Na0.5)NbO3 system. J Appl Phys 113(11):114106–114106-13CrossRefGoogle Scholar
  11. 11.
    Liu X, Zhai J, Shen B, Li F, Zhang Y, Li P, Liu BH (2017) Electric-field–temperature phase diagram and electromechanical properties in lead-free (Na0.5Bi0.5)TiO3-based incipient piezoelectric ceramics. J Eur Ceram Soc 37(4):1437–1447CrossRefGoogle Scholar
  12. 12.
    Zhang ST, Kounga AB, Jo W, Jamin C, Seifert K, Granzow T, Rödel J, Damjanovic D (2009) High-strain lead-free antiferroelectric electrostrictors. Adv Mater 21(46):4716–4721CrossRefGoogle Scholar
  13. 13.
    Chen J, Wang YP, Zhang YT, Yang Y, Jin RY (2017) Giant electric field-induced strain at room temperature in LiNbO3-doped 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3. J Eur Ceram Soc 37(6):2365–2371CrossRefGoogle Scholar
  14. 14.
    Liu X, Tan X (2015) Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics. Adv Mater 28(3):574–579CrossRefGoogle Scholar
  15. 15.
    Zhang ST, Kounga AB, Aulbach E, Ehrenberg H (2007) Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system. Appl Phys Lett 91(11):112906–112906-3CrossRefGoogle Scholar
  16. 16.
    Liu X, Li F, Zhai J, Shen B, Li P, Liu B (2017) Composition-induced structural transitions and enhanced strain response in nonstoichiometric NBT-based ceramics. J Am Ceram Soc 100(8):3636–3645CrossRefGoogle Scholar
  17. 17.
    Liu X, Li F, Li P, Zhai J, Shen B, Liu B (2017) Tuning the ferroelectric-relaxor transition temperature in NBT-based lead-free ceramics by Bi nonstoichiometry. J Eur Ceram Soc 37(15):4585–4595CrossRefGoogle Scholar
  18. 18.
    Liu X, Guo H, Tan X (2014) Evolution of structure and electrical properties with lanthanum content in [(Bi1/2Na1/2)0.95Ba0.05]1−xLaxTiO3 ceramics. J Eur Ceram Soc 34(12):2997–3006CrossRefGoogle Scholar
  19. 19.
    Li TY, Lou XJ, Ke XQ, Cheng SD, Mi SB, Wang XJ, Shi J, Liu X, Dong GZ, Fan HQ, Wang YZ, Tan XL (2017) Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5)TiO3-based lead-free piezoceramics. Acta Mater 128:337–344CrossRefGoogle Scholar
  20. 20.
    Li F, Jin L, Xu Z, Zhang SJ (2014) Electrostrictive effect in ferroelectrics: an alternative approach to improve piezoelectricity. Appl Phys Rev 1(1):011103-1–011103-21CrossRefGoogle Scholar
  21. 21.
    Zuo RZ, Qi H, Fu J, Li JF, Shi M, Xu YD (2016) Giant electrostrictive effects of NaNbO3–BaTiO3 lead-free relaxor ferroelectrics. Appl Phys Lett 108(23):232904-1–232904-5CrossRefGoogle Scholar
  22. 22.
    Li F, Jin L, Guo RP (2014) High electrostrictive coefficient Q 33 in lead-free Ba(Zr0.2Ti0.8)O3x(Ba0.7Ca0.3)TiO3 piezoelectric ceramics. Appl Phys Lett 105(23):232903-1–232903-4Google Scholar
  23. 23.
    Han HS, Jo W, Kang JK, Ahn CW, Kim IW, Ahn KK, Lee JS (2013) Incipient piezoelectrics and electrostriction behavior in Sn-doped Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics. J Appl Phys 113(15):154102-1–154102-6CrossRefGoogle Scholar
  24. 24.
    Qi H, Zhang HB, Zuo RZ (2017) NaNbO3–BaTiO3–NaSbO3 lead and potassium-free ceramics with thermally stable small-signal piezoelectric properties. J Am Ceram Soc 100(9):3990–3998CrossRefGoogle Scholar
  25. 25.
    Baraskar BG, Kambale RC, James AR, Mahesh ML, Ramana CV, Kolekar YD (2017) Ferroelectric, piezoelectric and electrostrictive properties of Sn4+-modified Ba0.7Ca0.3TiO3 lead-free electroceramics. J Am Ceram Soc 100:5755–5765CrossRefGoogle Scholar
  26. 26.
    Zheng SY, Odendo E, Liu LJ, Shi DP, Huang YM, Fan LL, Chen J, Fang L, Elouadi B (2013) Electrostrictive and relaxor ferroelectric behavior in BiAlO3-modified BaTiO3 lead-free ceramics. J Appl Phys 113(9):094102-1–094102-6CrossRefGoogle Scholar
  27. 27.
    Wang FF, Jin CC, Yao QR, Shi WZ (2013) Large electrostrictive effect in ternary Bi0.5Na0.5TiO3-based solid solutions. J Appl Phys 114(2):027004-1–027004-5Google Scholar
  28. 28.
    Chen A, Zhi Y (2006) High, purely electrostrictive strain in lead-free dielectrics. Adv Mater 18(1):103–106CrossRefGoogle Scholar
  29. 29.
    Hao JG, Xu ZJ, Chu RQ, Li W, Fu P, Du J, Li GR (2016) Structure evolution and electrostrictive properties in (Bi0.5Na0.5)0.94Ba0.06TiO3–M2O5 (M = Nb, Ta, Sb) lead-free piezoceramics. J Eur Ceram Soc 36(16):4003–4014CrossRefGoogle Scholar
  30. 30.
    Shi J, Fan HQ, Liu X, Bell AJ (2014) Large electrostrictive strain in (Bi0.5Na0.5)TiO3–BaTiO3–(Sr0.7Bi0.2)TiO3 solid solutions. J Am Ceram Soc 97(3):848–853CrossRefGoogle Scholar
  31. 31.
    Chen A, Zhi Y (2002) Dielectric relaxor and ferroelectric relaxor: Bi-doped paraelectric SrTiO3. J Appl Phys 91(3):1487–1494CrossRefGoogle Scholar
  32. 32.
    Cowley RA, Gvasaliya SN, Lushnikov SG, Roessli B, Rotaru GM (2011) Relaxing with relaxors: a review of relaxor ferroelectrics. Adv Phys 60(2):229–327CrossRefGoogle Scholar
  33. 33.
    Bokov AA, Ye ZG (2006) Recent progress in relaxor ferroelectrics with perovskite structure. J Mater Sci 41(1):31–52.  https://doi.org/10.1007/s10853-005-5915-7 CrossRefGoogle Scholar
  34. 34.
    Chen A, Zhi Y (2010) Dielectric and ferroelectric properties in (Sr, Ni, Na)TiO3 solid solutions. J Appl Phys 107(11):114106-1–114106-5.  https://doi.org/10.1063/1.3429234 CrossRefGoogle Scholar
  35. 35.
    Cheon CI, Choi JH, Kim JS, Zang J, Frömling T, Rödel J, Jo W (2016) Role of (Bi1/2K1/2)TiO3 in the dielectric relaxations of BiFeO3–(Bi1/2K1/2)TiO3 ceramics. J Appl Phys 119(15):154101-1–154101-5CrossRefGoogle Scholar
  36. 36.
    Ogihara H, Randall CA, Trolier-McKinstry S (2009) Weakly coupled relaxor behavior of BaTiO3–BiScO3 ceramics. J Am Ceram Soc 92(1):110–118CrossRefGoogle Scholar
  37. 37.
    Shvartsman VV, Lupascu DC (2012) Lead-free relaxor ferroelectrics. J Am Ceram Soc 95(1):1–26CrossRefGoogle Scholar
  38. 38.
    Viola G, Ning H, Wei X, Deluca M, Adomkevicius A, Khaliq J, Reece MJ, Yan H (2013) Dielectric relaxation, lattice dynamics and polarization mechanisms in Bi0.5Na0.5TiO3-based lead-free ceramics. J Appl Phys 114(1):014107-1–014107-9CrossRefGoogle Scholar
  39. 39.
    Wang CC, Ni W, Sun XH, Wang L, Wang C, Jin KJ (2017) Relaxor-like behaviors in Na1/2Bi1/2Cu3Ti4O12 ceramics. J Am Ceram Soc 100(5):2016–2023CrossRefGoogle Scholar
  40. 40.
    Mahana S, Dhanasekhar C, Venimadhav A, Topwal D (2017) Defect induced polarization and dielectric relaxation in Ga2−xFexO3. Appl Phys Lett 111(13):132902-1–132902-4CrossRefGoogle Scholar
  41. 41.
    Schutz D, Deluca M, Krauss W, Feteira A, Reichmann K (2012) Lone-pair-induced covalency as the cause of temperature- and field-induced instabilities in bismuth sodium titanate. Adv Funct Mater 22(11):2285–2294CrossRefGoogle Scholar
  42. 42.
    Kreisel J, Glazer AM, Jones G, Thomas PA, Abello L, Lucazeau G (2000) An x-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: the (Na1−xKx)0.5Bi0.5TiO3 (0 ≤ x ≤ 1) solid solution. J Phys Condens Matter 12(12):3267–3280CrossRefGoogle Scholar
  43. 43.
    Lidjici H, Lagoun B, Berrahal M, Rguitti M, Hentatti MA, Khemakhem H (2015) XRD, Raman and electrical studies on the (1−x)(Na0.5Bi0.5)TiO3xBaTiO3 lead free ceramics. J Alloy Compd 618:643–648CrossRefGoogle Scholar
  44. 44.
    Liu LJ, Knapp M, Ehrenberg H, Fang L, Fan HQ, Schmitt LA, Fuess H, Hoelzel M, Dammak H, Thi MP, Hinterstein M (2017) Average vs. local structure and composition-property phase diagram of K0.5Na0.5NbO3–Bi1/2Na1/2TiO3 system. J Eur Ceram Soc 37(4):1387–1399CrossRefGoogle Scholar
  45. 45.
    Feteira A, Sinclair DC, Kreisel J (2010) Average and local structure of (1−x)BaTiO3xLaYO3 (0 ≤ x≤ 0.50) ceramics. J Am Ceram Soc 93(12):4174–4181CrossRefGoogle Scholar
  46. 46.
    Rao BN, Datta R, Chandrashekaran SS, Mishra DK, Sathe V, Senyshyn A, Ranjan R (2013) Local structural disorder and its influence on the average global structure and polar properties in Na0.5Bi0.5TiO3. Phys Rev B 88(22):224103-1–224103-15CrossRefGoogle Scholar
  47. 47.
    Yuan Q, Yao F, Wang Y, Ma R, Wang H (2017) Relaxor ferroelectric 0.9BaTiO3––0.1Bi(Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties. J Mater Chem C 5:9552–9558CrossRefGoogle Scholar
  48. 48.
    Yang H, Yan F, Lin Y, Wang T, Wang F (2017) High energy storage density over a broad temperature range in sodium bismuth titanate-based lead-free ceramics. Sci Rep 7(1):8726CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jun Wang
    • 1
    • 2
  • Changrong Zhou
    • 1
    • 2
  • Qingning Li
    • 1
  • Weidong Zeng
    • 1
  • Jiwen Xu
    • 1
    • 2
  • Guohua Chen
    • 1
    • 2
  • Changlai Yuan
    • 1
    • 2
  • Guanghui Rao
    • 1
    • 2
  1. 1.Guangxi Key Laboratory of Information MaterialsGuilin University of Electronic TechnologyGuilinPeople’s Republic of China
  2. 2.School of Material Science and EngineeringGuilin University of Electronic TechnologyGuilinPeople’s Republic of China

Personalised recommendations