Skip to main content
Log in

Dual relaxation behaviors and large electrostrictive properties of Bi0.5Na0.5TiO3–Sr0.85Bi0.1TiO3 ceramics

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lead-free ceramics (1 − x)Bi0.5Na0.5TiO3xSr0.85Bi0.1TiO3 (BNT–xSBT, x = 0.4, 0.5, 0.6 and 0.7) were prepared by a solid-state reaction process. Coexistence of ferroelectric relaxation at low temperature and Maxwell–Wagner dielectric relaxation at high temperature was revealed for the first time in this system. Meanwhile, hysteresis-free PE loops combined with a very high piezoelectric strain coefficient (d33) of 1658 pC/N concurrently with large electrostrictive coefficient Q = 0.287 m4C−2 were achieved. The ferroelectric relaxor behavior and large electrostrictive strain might be linked to easy reorientation and reversal of ergodic PNRs and the combined effect of Bi off-center position and lone pair electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Rödel J, Webber KG, Dittmer R, Jo W, Kimura M, Damjanovic D (2015) Transferring lead-free piezoelectric ceramics into application. J Eur Ceram Soc 35(6):1659–1681

    Article  Google Scholar 

  2. Rödel J, Jo W, Seifert KTP, Anton EM, Granzow T (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92(6):1153–1177

    Article  Google Scholar 

  3. Liu D, Tian CY, Ma CG, Luo LH, Tang YX, Wang T, Shi WZ, Sun DZ, Wang FF (2016) Composition, electric-field and temperature induced domain evolution in lead-free Bi0.5Na0.5TiO3–BaTiO3–SrTiO3 solid solutions by piezoresponse force microscopy. Scr Mater 123:64–68

    Article  Google Scholar 

  4. Rao BN, Senyshyn A, Olivi L, Sathe V, Ranjan R (2016) Maintaining local displacive disorders in Na0.5Bi0.5TiO3 piezoceramics by K0.5Bi0.5TiO3 substitution. J Eur Ceram Soc 36(8):1961–1972

    Article  Google Scholar 

  5. Khatua DK, Mehrotra T, Mishra A, Majumdar B, Senyshyn A, Ranjan R (2017) Anomalous influence of grain size on the global structure, ferroelectric and piezoelectric response of Na0.5Bi0.5TiO3. Acta Mater 134:177–187

    Article  Google Scholar 

  6. Li M, Pietrowski MJ, Souza RAD, Zhang H, Reaney IM, Cook SN, Kilner JA, Sinclair DC (2014) A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3. Nat Mater 13(1):31–35

    Article  Google Scholar 

  7. Hong CH, Kim HP, Choi BY, Han HS, Son JS, Ahn CW, Jo W (2016) Lead-free piezoceramics—where to move on. J Materiomics 2(1):1–24

    Article  Google Scholar 

  8. Li LL, Hao JG, Xu ZJ, Li W, Chu RQ (2016) 0.46% unipolar strain in lead-free BNT-BT system modified with Al and Sb. Mater Lett 184:152–156

    Article  Google Scholar 

  9. Liu X, Tan X (2016) Giant strain with low cycling degradation in Ta-doped [Bi1/2(Na0.8K0.2)1/2]TiO3 lead-free ceramics. J Appl Phys 120(3):71–94

    Article  Google Scholar 

  10. Hao J, Shen B, Zhai J, Liu C (2013) Switching of morphotropic phase boundary and large strain response in lead-free ternary (Bi0.5Na0.5)TiO3–(K0.5Bi0.5)TiO3–(K0.5Na0.5)NbO3 system. J Appl Phys 113(11):114106–114106-13

    Article  Google Scholar 

  11. Liu X, Zhai J, Shen B, Li F, Zhang Y, Li P, Liu BH (2017) Electric-field–temperature phase diagram and electromechanical properties in lead-free (Na0.5Bi0.5)TiO3-based incipient piezoelectric ceramics. J Eur Ceram Soc 37(4):1437–1447

    Article  Google Scholar 

  12. Zhang ST, Kounga AB, Jo W, Jamin C, Seifert K, Granzow T, Rödel J, Damjanovic D (2009) High-strain lead-free antiferroelectric electrostrictors. Adv Mater 21(46):4716–4721

    Article  Google Scholar 

  13. Chen J, Wang YP, Zhang YT, Yang Y, Jin RY (2017) Giant electric field-induced strain at room temperature in LiNbO3-doped 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3. J Eur Ceram Soc 37(6):2365–2371

    Article  Google Scholar 

  14. Liu X, Tan X (2015) Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics. Adv Mater 28(3):574–579

    Article  Google Scholar 

  15. Zhang ST, Kounga AB, Aulbach E, Ehrenberg H (2007) Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system. Appl Phys Lett 91(11):112906–112906-3

    Article  Google Scholar 

  16. Liu X, Li F, Zhai J, Shen B, Li P, Liu B (2017) Composition-induced structural transitions and enhanced strain response in nonstoichiometric NBT-based ceramics. J Am Ceram Soc 100(8):3636–3645

    Article  Google Scholar 

  17. Liu X, Li F, Li P, Zhai J, Shen B, Liu B (2017) Tuning the ferroelectric-relaxor transition temperature in NBT-based lead-free ceramics by Bi nonstoichiometry. J Eur Ceram Soc 37(15):4585–4595

    Article  Google Scholar 

  18. Liu X, Guo H, Tan X (2014) Evolution of structure and electrical properties with lanthanum content in [(Bi1/2Na1/2)0.95Ba0.05]1−xLa x TiO3 ceramics. J Eur Ceram Soc 34(12):2997–3006

    Article  Google Scholar 

  19. Li TY, Lou XJ, Ke XQ, Cheng SD, Mi SB, Wang XJ, Shi J, Liu X, Dong GZ, Fan HQ, Wang YZ, Tan XL (2017) Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5)TiO3-based lead-free piezoceramics. Acta Mater 128:337–344

    Article  Google Scholar 

  20. Li F, Jin L, Xu Z, Zhang SJ (2014) Electrostrictive effect in ferroelectrics: an alternative approach to improve piezoelectricity. Appl Phys Rev 1(1):011103-1–011103-21

    Article  Google Scholar 

  21. Zuo RZ, Qi H, Fu J, Li JF, Shi M, Xu YD (2016) Giant electrostrictive effects of NaNbO3–BaTiO3 lead-free relaxor ferroelectrics. Appl Phys Lett 108(23):232904-1–232904-5

    Article  Google Scholar 

  22. Li F, Jin L, Guo RP (2014) High electrostrictive coefficient Q 33 in lead-free Ba(Zr0.2Ti0.8)O3x(Ba0.7Ca0.3)TiO3 piezoelectric ceramics. Appl Phys Lett 105(23):232903-1–232903-4

    Google Scholar 

  23. Han HS, Jo W, Kang JK, Ahn CW, Kim IW, Ahn KK, Lee JS (2013) Incipient piezoelectrics and electrostriction behavior in Sn-doped Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics. J Appl Phys 113(15):154102-1–154102-6

    Article  Google Scholar 

  24. Qi H, Zhang HB, Zuo RZ (2017) NaNbO3–BaTiO3–NaSbO3 lead and potassium-free ceramics with thermally stable small-signal piezoelectric properties. J Am Ceram Soc 100(9):3990–3998

    Article  Google Scholar 

  25. Baraskar BG, Kambale RC, James AR, Mahesh ML, Ramana CV, Kolekar YD (2017) Ferroelectric, piezoelectric and electrostrictive properties of Sn4+-modified Ba0.7Ca0.3TiO3 lead-free electroceramics. J Am Ceram Soc 100:5755–5765

    Article  Google Scholar 

  26. Zheng SY, Odendo E, Liu LJ, Shi DP, Huang YM, Fan LL, Chen J, Fang L, Elouadi B (2013) Electrostrictive and relaxor ferroelectric behavior in BiAlO3-modified BaTiO3 lead-free ceramics. J Appl Phys 113(9):094102-1–094102-6

    Article  Google Scholar 

  27. Wang FF, Jin CC, Yao QR, Shi WZ (2013) Large electrostrictive effect in ternary Bi0.5Na0.5TiO3-based solid solutions. J Appl Phys 114(2):027004-1–027004-5

    Google Scholar 

  28. Chen A, Zhi Y (2006) High, purely electrostrictive strain in lead-free dielectrics. Adv Mater 18(1):103–106

    Article  Google Scholar 

  29. Hao JG, Xu ZJ, Chu RQ, Li W, Fu P, Du J, Li GR (2016) Structure evolution and electrostrictive properties in (Bi0.5Na0.5)0.94Ba0.06TiO3–M2O5 (M = Nb, Ta, Sb) lead-free piezoceramics. J Eur Ceram Soc 36(16):4003–4014

    Article  Google Scholar 

  30. Shi J, Fan HQ, Liu X, Bell AJ (2014) Large electrostrictive strain in (Bi0.5Na0.5)TiO3–BaTiO3–(Sr0.7Bi0.2)TiO3 solid solutions. J Am Ceram Soc 97(3):848–853

    Article  Google Scholar 

  31. Chen A, Zhi Y (2002) Dielectric relaxor and ferroelectric relaxor: Bi-doped paraelectric SrTiO3. J Appl Phys 91(3):1487–1494

    Article  Google Scholar 

  32. Cowley RA, Gvasaliya SN, Lushnikov SG, Roessli B, Rotaru GM (2011) Relaxing with relaxors: a review of relaxor ferroelectrics. Adv Phys 60(2):229–327

    Article  Google Scholar 

  33. Bokov AA, Ye ZG (2006) Recent progress in relaxor ferroelectrics with perovskite structure. J Mater Sci 41(1):31–52. https://doi.org/10.1007/s10853-005-5915-7

    Article  Google Scholar 

  34. Chen A, Zhi Y (2010) Dielectric and ferroelectric properties in (Sr, Ni, Na)TiO3 solid solutions. J Appl Phys 107(11):114106-1–114106-5. https://doi.org/10.1063/1.3429234

    Article  Google Scholar 

  35. Cheon CI, Choi JH, Kim JS, Zang J, Frömling T, Rödel J, Jo W (2016) Role of (Bi1/2K1/2)TiO3 in the dielectric relaxations of BiFeO3–(Bi1/2K1/2)TiO3 ceramics. J Appl Phys 119(15):154101-1–154101-5

    Article  Google Scholar 

  36. Ogihara H, Randall CA, Trolier-McKinstry S (2009) Weakly coupled relaxor behavior of BaTiO3–BiScO3 ceramics. J Am Ceram Soc 92(1):110–118

    Article  Google Scholar 

  37. Shvartsman VV, Lupascu DC (2012) Lead-free relaxor ferroelectrics. J Am Ceram Soc 95(1):1–26

    Article  Google Scholar 

  38. Viola G, Ning H, Wei X, Deluca M, Adomkevicius A, Khaliq J, Reece MJ, Yan H (2013) Dielectric relaxation, lattice dynamics and polarization mechanisms in Bi0.5Na0.5TiO3-based lead-free ceramics. J Appl Phys 114(1):014107-1–014107-9

    Article  Google Scholar 

  39. Wang CC, Ni W, Sun XH, Wang L, Wang C, Jin KJ (2017) Relaxor-like behaviors in Na1/2Bi1/2Cu3Ti4O12 ceramics. J Am Ceram Soc 100(5):2016–2023

    Article  Google Scholar 

  40. Mahana S, Dhanasekhar C, Venimadhav A, Topwal D (2017) Defect induced polarization and dielectric relaxation in Ga2−xFe x O3. Appl Phys Lett 111(13):132902-1–132902-4

    Article  Google Scholar 

  41. Schutz D, Deluca M, Krauss W, Feteira A, Reichmann K (2012) Lone-pair-induced covalency as the cause of temperature- and field-induced instabilities in bismuth sodium titanate. Adv Funct Mater 22(11):2285–2294

    Article  Google Scholar 

  42. Kreisel J, Glazer AM, Jones G, Thomas PA, Abello L, Lucazeau G (2000) An x-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: the (Na1−xK x )0.5Bi0.5TiO3 (0 ≤ x ≤ 1) solid solution. J Phys Condens Matter 12(12):3267–3280

    Article  Google Scholar 

  43. Lidjici H, Lagoun B, Berrahal M, Rguitti M, Hentatti MA, Khemakhem H (2015) XRD, Raman and electrical studies on the (1−x)(Na0.5Bi0.5)TiO3xBaTiO3 lead free ceramics. J Alloy Compd 618:643–648

    Article  Google Scholar 

  44. Liu LJ, Knapp M, Ehrenberg H, Fang L, Fan HQ, Schmitt LA, Fuess H, Hoelzel M, Dammak H, Thi MP, Hinterstein M (2017) Average vs. local structure and composition-property phase diagram of K0.5Na0.5NbO3–Bi1/2Na1/2TiO3 system. J Eur Ceram Soc 37(4):1387–1399

    Article  Google Scholar 

  45. Feteira A, Sinclair DC, Kreisel J (2010) Average and local structure of (1−x)BaTiO3xLaYO3 (0 ≤ x≤ 0.50) ceramics. J Am Ceram Soc 93(12):4174–4181

    Article  Google Scholar 

  46. Rao BN, Datta R, Chandrashekaran SS, Mishra DK, Sathe V, Senyshyn A, Ranjan R (2013) Local structural disorder and its influence on the average global structure and polar properties in Na0.5Bi0.5TiO3. Phys Rev B 88(22):224103-1–224103-15

    Article  Google Scholar 

  47. Yuan Q, Yao F, Wang Y, Ma R, Wang H (2017) Relaxor ferroelectric 0.9BaTiO3––0.1Bi(Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties. J Mater Chem C 5:9552–9558

    Article  Google Scholar 

  48. Yang H, Yan F, Lin Y, Wang T, Wang F (2017) High energy storage density over a broad temperature range in sodium bismuth titanate-based lead-free ceramics. Sci Rep 7(1):8726

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (61561015, 11564007 and 11664006) and the Natural Science Foundation of Guangxi (2017GXNSFDA198024 and 2016GXNSFAA 380069).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changrong Zhou or Weidong Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhou, C., Li, Q. et al. Dual relaxation behaviors and large electrostrictive properties of Bi0.5Na0.5TiO3–Sr0.85Bi0.1TiO3 ceramics. J Mater Sci 53, 8844–8854 (2018). https://doi.org/10.1007/s10853-018-2186-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2186-7

Keywords

Navigation