Advertisement

Journal of Materials Science

, Volume 53, Issue 12, pp 9091–9098 | Cite as

Enhanced thermoelectric performance of bismuth-doped magnesium silicide synthesized under high pressure

  • Jianghua Li
  • Xiaopu Li
  • Chen Chen
  • Wentao Hu
  • Fengrong Yu
  • Zhisheng Zhao
  • Long Zhang
  • Dongli Yu
  • Yongjun Tian
  • Bo Xu
Electronic materials

Abstract

Polycrystalline Mg2Si1−xBi x compounds were prepared with high-pressure synthesis followed by spark plasma sintering. The structural and compositional analyses indicate a dominant antifluorite phase with the oxidation and volatilizing loss of Mg highly suppressed. High-pressure synthesis promotes Bi doping and the formation of interstitial Mg, both of which contribute electrons and give rise to high carrier concentration. Meanwhile, a relatively high carrier mobility is maintained with elevating carrier concentration, beneficial to the thermoelectric properties enhancement of our high-pressure synthesized samples. The optimal Mg2Si0.985Bi0.015 possesses the highest power factor and the lowest thermal conductivity. As a result, the maximal ZT of 0.98 is achieved at 883 K, one of the highest values for the Bi-doped binary Mg2Si compounds. Our results thus indicate the advantage of high pressure in synthesizing Mg2Si-based thermoelectric materials with enhanced thermoelectric performance.

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of China (51525205, 51421091, 51402254, and 51722209) and the Key Basic Research Project of Hebei (14961013D).

Supplementary material

10853_2018_2185_MOESM1_ESM.docx (442 kb)
Supplementary material 1 (DOCX 441 kb)

References

  1. 1.
    Shi X, Chen L, Uher C (2016) Recent advances in high-performance bulk thermoelectric materials. Int Mater Rev 61:379–415CrossRefGoogle Scholar
  2. 2.
    Tan G, Zhao LD, Kanatzidis MG (2016) Rationally designing high-performance bulk thermoelectric materials. Chem Rev 116:12123–12149CrossRefGoogle Scholar
  3. 3.
    He J, Tritt TM (2017) Advances in thermoelectric materials research: looking back and moving forward. Science 357:eaak9997CrossRefGoogle Scholar
  4. 4.
    Yang L, Chen Z-G, Dargusch MS et al (2017) High performance thermoelectric materials: progress and their applications. Adv Energy Mater 7:1701797Google Scholar
  5. 5.
    Pei Y, Shi X, LaLonde A et al (2011) Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473:66–69CrossRefGoogle Scholar
  6. 6.
    Pei Y, Wang H, Snyder GJ (2012) Band engineering of thermoelectric materials. Adv Mater 24:6125–6135CrossRefGoogle Scholar
  7. 7.
    Slack GA (1995) New materials and performance limits for thermoelectric cooling. In: Rowe DM (ed) CRC handbook of thermoelectrics. CRC Press, Boca Raton, pp 407–440Google Scholar
  8. 8.
    Biswas K, He J, Blum ID et al (2012) High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489:414–418CrossRefGoogle Scholar
  9. 9.
    Poudel B, Hao Q, Ma Y et al (2008) High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320:634–638CrossRefGoogle Scholar
  10. 10.
    Cheng X, Farahi N, Kleinke H (2016) Mg2Si-based materials for the thermoelectric energy conversion. JOM 68:2680–2687CrossRefGoogle Scholar
  11. 11.
    Bux SK, Yeung MT, Toberer ES et al (2011) Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide. J Mater Chem 21:12259–12266CrossRefGoogle Scholar
  12. 12.
    Farahi N, VanZant M, Zhao J et al (2014) Sb- and Bi-doped Mg2Si: location of the dopants, micro- and nanostructures, electronic structures and thermoelectric properties. Dalton Trans 43:14983–14991CrossRefGoogle Scholar
  13. 13.
    Ioannou M, Polymeris GS, Hatzikraniotis E et al (2014) Effect of Bi-doping and Mg-excess on the thermoelectric properties of Mg2Si materials. J Phys Chem Solids 75:984–991CrossRefGoogle Scholar
  14. 14.
    Saleemi M, Toprak MS, Fiameni S et al (2013) Spark plasma sintering and thermoelectric evaluation of nanocrystalline magnesium silicide (Mg2Si). J Mater Sci 48:1940–1946.  https://doi.org/10.1007/s10853-012-6959-0 CrossRefGoogle Scholar
  15. 15.
    Zhang Q, Su X, Yan Y et al (2016) Phase segregation and superior thermoelectric properties of Mg2Si1−xSbx (0 ≤ x ≤ 0.025) prepared by ultrafast self-propagating high-temperature synthesis. ACS Appl Mater Interfaces 8:3268–3276CrossRefGoogle Scholar
  16. 16.
    Khan AU, Vlachos N, Kyratsi T (2013) High thermoelectric figure of merit of Mg2Si0.55Sn0.4Ge0.05 materials doped with Bi and Sb. Scr Mater 69:606–609CrossRefGoogle Scholar
  17. 17.
    Liu W, Zhang Q, Yin K et al (2013) High figure of merit and thermoelectric properties of Bi-doped Mg2Si0.4Sn0.6 solid solutions. J Solid State Chem 203:333–339CrossRefGoogle Scholar
  18. 18.
    Saparamadu U, Mao J, Dahal K et al (2017) The effect of charge carrier and doping site on thermoelectric properties of Mg2Sn0.75Ge0.25. Acta Mater 124:528–535CrossRefGoogle Scholar
  19. 19.
    de Boor J, Dasgupta T, Kolb H et al (2014) Microstructural effects on thermoelectric efficiency: a case study on magnesium silicide. Acta Mater 77:68–75CrossRefGoogle Scholar
  20. 20.
    Gao H, Zhu T, Liu X et al (2011) Flux synthesis and thermoelectric properties of eco-friendly Sb doped Mg2Si0.5Sn0.5 solid solutions for energy harvesting. J Mater Chem 21:5933–5937CrossRefGoogle Scholar
  21. 21.
    Yi T, Chen S, Li S et al (2012) Synthesis and characterization of Mg2Si/Si nanocomposites prepared from MgH2 and silicon, and their thermoelectric properties. J Mater Chem 22:24805–24813CrossRefGoogle Scholar
  22. 22.
    Cai B, Li J, Sun H et al (2017) Sodium doped polycrystalline SnSe: high pressure synthesis and thermoelectric properties. J Alloys Compd 727:1014–1019CrossRefGoogle Scholar
  23. 23.
    Kang YL, Zhang Q, Fan CZ et al (2017) High pressure synthesis and thermoelectric properties of polycrystalline Bi2Se3. J Alloys Compd 700:223–227CrossRefGoogle Scholar
  24. 24.
    Yang M, Zhu H, Li H et al (2017) Electrical transport and thermoelectric properties of PbTe1−xIx synthesized by high pressure and high temperature. J Alloys Compd 696:161–165CrossRefGoogle Scholar
  25. 25.
    Zhang J, Xu B, Wang L-M et al (2012) High-pressure synthesis of phonon-glass electron-crystal featured thermoelectric LixCo4Sb12. Acta Mater 60:1246–1251CrossRefGoogle Scholar
  26. 26.
    Zhang Y, Jia X, Sun H et al (2016) Effect of high pressure on thermoelectric performance and electronic structure of SnSe via HPHT. J Alloys Compd 667:123–129CrossRefGoogle Scholar
  27. 27.
    Zhu P, Jia X, Chen H et al (2002) A new method of synthesis for thermoelectric materials: HPHT. Solid State Commun 123:43–47CrossRefGoogle Scholar
  28. 28.
    Badding JV (1998) High-pressure synthesis, characterization, and tuning of solid state materials. Annu Rev Mater Sci 28:631–658CrossRefGoogle Scholar
  29. 29.
    Imai Y, Mori Y, Nakamura S et al (2016) Consideration about the synthesis pressure effect on lattice defects of Mg2Si using 1st principle calculations. J Alloys Compd 664:369–377CrossRefGoogle Scholar
  30. 30.
    Li J, Li X, Cai B et al (2018) Enhanced thermoelectric performance of high pressure synthesized Sb-doped Mg2Si. J Alloys and Compd 741:1148–1152CrossRefGoogle Scholar
  31. 31.
    Choi S-M, Kim K-H, Kim I-H et al (2011) Thermoelectric properties of the Bi-doped Mg2Si system. Curr Appl Phys 11:S388–S391CrossRefGoogle Scholar
  32. 32.
    Nieroda P, Leszczynski J, Kolezynski A (2017) Bismuth doped Mg2Si with improved homogeneity: synthesis, characterization and optimization of thermoelectric properties. J Phys Chem Solids 103:147–159CrossRefGoogle Scholar
  33. 33.
    Tani J-I, Kido H (2005) Thermoelectric properties of Bi-doped Mg2Si semiconductors. Phys B 364:218–224CrossRefGoogle Scholar
  34. 34.
    Caillat T, Borshchevsky A, Fleurial JP (1996) Properties of single crystalline semiconducting CoSb3. J Appl Phys 80:4442–4449CrossRefGoogle Scholar
  35. 35.
    Du Z, Zhu T, Chen Y et al (2012) Roles of interstitial Mg in improving thermoelectric properties of Sb-doped Mg2Si0.4Sn0.6 solid solutions. J Mater Chem 22:6838–6844CrossRefGoogle Scholar
  36. 36.
    Kim H-S, Gibbs ZM, Tang Y et al (2015) Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater 3:041506CrossRefGoogle Scholar
  37. 37.
    Brazhkin VV (2007) High-pressure synthesized materials: treasures and hints. High Press Res 27:333–351CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoChina

Personalised recommendations