Skip to main content

Advertisement

Log in

Reduced graphene oxide/Fe-phthalocyanine nanosphere cathodes for lithium-ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Organic–inorganic composites show great potential for organic rechargeable lithium-ion batteries. In this work, two-dimensional phthalocyanine molecules were converted into hybrid nanoparticles with a porous structure and bound to a conductive graphene layer to act as a cathode material. The conductivity of this reduced graphene oxide/Fe-phthalocyanine (rGO/FePc) composite is improved through good interfacial connections and internal polymerization. The FePc spheres were shaped with the assistance of Fe3O4 and immobilized between the layers of reduced graphene oxide (rGO). The electrochemical properties of the organic–inorganic composites were investigated by testing in a lithium-ion cell. A high discharge capacity of 186 mAh g−1 was maintained after 100 cycles at 300 mA g−1, which demonstrates a significant improvement in the cycle life compared to previous reports of phthalocyanine-based electrochemical energy storage behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Rogers JA, Someya T, Huang Y (2010) Materials and mechanics for stretchable electronics. Science 80(327):1603–1607. https://doi.org/10.1126/science.1182383

    Article  Google Scholar 

  2. Wu H, Shevlin SA, Meng Q et al (2014) Flexible and binder-free organic cathode for high-performance lithium-ion batteries. Adv Mater 26:3338–3343. https://doi.org/10.1002/adma.201305452

    Article  Google Scholar 

  3. Lee J, Kim H, Park MJ (2016) Long-life, high-rate lithium-organic batteries based on naphthoquinone derivatives. Chem Mater 28:2408–2416. https://doi.org/10.1021/acs.chemmater.6b00624

    Article  Google Scholar 

  4. Zeng R, Xing L, Qiu Y et al (2014) Polycarbonyl(quinonyl) organic compounds as cathode materials for sustainable lithium ion batteries. Electrochim Acta 146:447–454. https://doi.org/10.1016/j.electacta.2014.09.082

    Article  Google Scholar 

  5. Byrne JJ, Driscoll JS, Williams DL (1969) A high energy density lithium/dichloroisocyanuric acid battery system. Electrochem Sci 116:3–5

    Google Scholar 

  6. Liang Y, Tao Z, Chen J (2012) Organic electrode materials for rechargeable lithium batteries. Adv Energy Mater 2:742–769. https://doi.org/10.1002/aenm.201100795

    Article  Google Scholar 

  7. Janoschka T, Hager MD, Schubert US (2012) Powering up the future: radical polymers for battery applications. Adv Mater 24:6397–6409. https://doi.org/10.1002/adma.201203119

    Article  Google Scholar 

  8. Novák P, Müller K, Santhanam KSV, Haas O (1997) Electrochemically active polymers for rechargeable batteries. Chem Rev 97:207–282. https://doi.org/10.1021/cr941181o

    Article  Google Scholar 

  9. Kiya Y, Henderson JC, Hutchison GR, Abruna HD (2007) Synthesis, computational and electrochemical characterization of a family of functionalized dimercaptothiophenes for potential use as high-energy cathode materials for lithium/lithium-ion batteries. J Mater Chem 17:4366–4376. https://doi.org/10.1039/B707235J

    Article  Google Scholar 

  10. Pasquali M, Pistoia G, Boschi T, Tagliatesta P (1987) Redox mechanism and cycling behaviour of nonylbenzo-hexaquinone electrodes in Li cells. Solid State Ionics 23:261–266. https://doi.org/10.1016/0167-2738(87)90003-8

    Article  Google Scholar 

  11. Liu M (1991) Novel solid redox polymerization electrodes. J Electrochem Soc 138:1896. https://doi.org/10.1149/1.2085896

    Article  Google Scholar 

  12. Zhao L, Wang W, Wang A et al (2011) A MC/AQ parasitic composite as cathode material for lithium battery. J Electrochem Soc 158:A991–A996. https://doi.org/10.1149/1.3605719

    Article  Google Scholar 

  13. Bugnon L, Morton CJH, Novak P et al (2007) Synthesis of poly(4-methacryloyloxy-TEMPO) via group-transfer polymerization and its evaluation in organic radical battery. Chem Mater 19:2910–2914. https://doi.org/10.1021/cm063052h

    Article  Google Scholar 

  14. Genorio B, Pirnat K, Cerc-Korosec R et al (2010) Electroactive organic molecules immobilized onto solid nanoparticles as a cathode material for lithium-ion batteries. Angew Chemie - Int Ed 49:7222–7224. https://doi.org/10.1002/anie.201001539

    Article  Google Scholar 

  15. Capone S, Mongelli S, Rella R et al (1999) Gas sensitivity measurements on NO2 sensors based on copper(II) tetrakis(n-butylaminocarbonyl)phthalocyanine LB films. Langmuir 15:1748–1753

    Article  Google Scholar 

  16. O’Regan BC, López-Duarte I, Martínez-Díaz MV et al (2008) Catalysis of recombination and its limitation on open circuit voltage for dye sensitized photovoltaic cells using phthalocyanine dyes. J Am Chem Soc 130:2906–2907. https://doi.org/10.1021/ja078045o

    Article  Google Scholar 

  17. O’Flaherty SM, Hold SV, Cook MJ et al (2003) Molecular engineering of peripherally and axially modified phthalocyanines for optical limiting and nonlinear optics. Adv Mater 15:19–32. https://doi.org/10.1002/adma.200390002

    Article  Google Scholar 

  18. Asai Y, Miyata S, Onishi K et al (2000) Metal-free octacyanophthalocyanine as cathode-active material for a secondary lithium battery. Electrochim Acta 46:77–81. https://doi.org/10.1016/S0013-4686(00)00541-7

    Article  Google Scholar 

  19. Wang Y, Chen J, Jiang C et al (2017) Tetra-β-nitro-substituted phthalocyanines: a new organic electrode material for lithium batteries. J Solid State Electrochem 21:947–954. https://doi.org/10.1007/s10008-016-3419-9

    Article  Google Scholar 

  20. Lee M, Hong J, Kim H et al (2014) Organic nanohybrids for fast and sustainable energy storage. Adv Mater 26:2558–2565. https://doi.org/10.1002/adma.201305005

    Article  Google Scholar 

  21. Ramos-Sanchez G, Callejas-Tovar A, Scanlon LG, Balbuena PB (2014) DFT analysis of Li intercalation mechanisms in the Fe-phthalocyanine cathode of Li-ion batteries. Phys Chem Chem Phys 16:743–752. https://doi.org/10.1039/c3cp53161a

    Article  Google Scholar 

  22. Crowther O, Du LS, Moureau DM et al (2012) Effect of conductive carbon on capacity of iron phthalocyanine cathodes in primary lithium batteries. J Power Sources 217:92–97. https://doi.org/10.1016/j.jpowsour.2012.06.003

    Article  Google Scholar 

  23. Yamaki J (1982) Phthalocyanine cathode materials for secondary lithium cells. J Electrochem Soc 129:5. https://doi.org/10.1149/1.2123792

    Article  Google Scholar 

  24. Chen J, Zhang Q, Zeng M et al (2016) Carboxyl-conjugated phthalocyanines used as novel electrode materials with high specific capacity for lithium-ion batteries. J Solid State Electrochem 20:1285–1294. https://doi.org/10.1007/s10008-016-3126-6

    Article  Google Scholar 

  25. Voiry D, Yang J, Kupferberg J et al (2016) High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 80(353):1413–1416. https://doi.org/10.1126/science.aah3398

    Article  Google Scholar 

  26. Iqbal MZ, Abdala AA, Mittal V et al (2016) Processable conductive graphene/polyethylene nanocomposites: effects of graphene dispersion and polyethylene blending with oxidized polyethylene on rheology and microstructure. Polym (United Kingdom) 98:143–155. https://doi.org/10.1016/j.polymer.2016.06.021

    Google Scholar 

  27. Lin D, Liu Y, Liang Z et al (2016) Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat Nanotechnol 11:626–632. https://doi.org/10.1038/nnano.2016.32

    Article  Google Scholar 

  28. Georgakilas V, Tiwari JN, Kemp KC et al (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116:5464–5519. https://doi.org/10.1021/acs.chemrev.5b00620

    Article  Google Scholar 

  29. Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814. https://doi.org/10.1021/nn1006368

    Article  Google Scholar 

  30. Guo C, Zhou L, Lv J (2013) Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polym Polym Compos 21:449–456. https://doi.org/10.1002/app

    Google Scholar 

  31. He D-X, Qiu Y, Li L-L et al (2015) Large-scale solvent-thermal synthesis of graphene/magnetite/conductive oligomer ternary composites for microwave absorption. Sci China Mater 58:566–573. https://doi.org/10.1007/s40843-015-0065-y

    Article  Google Scholar 

  32. Zhou K, Zhu Y, Yang X, Li C (2010) One-pot preparation of graphene/Fe3O4 composites by a solvothermal reaction. New J Chem 34:2950. https://doi.org/10.1039/c0nj00283f

    Article  Google Scholar 

  33. Zheng J, Liu ZQ, Zhao XS et al (2012) One-step solvothermal synthesis of Fe3O4@C core–shell nanoparticles with tunable sizes. Nanotechnology 23:165601. https://doi.org/10.1088/0957-4484/23/16/165601

    Article  Google Scholar 

  34. Xuan S, Wang YXJ, Yu JC, Leung KCF (2009) Tuning the grain size and particle size of superparamagnetic Fe3O4 microparticles. Chem Mater 21:5079–5087. https://doi.org/10.1021/cm901618m

    Article  Google Scholar 

  35. Yan A, Liu X, Qiu G et al (2008) Solvothermal synthesis and characterization of size-controlled Fe3O4 nanoparticles. J Alloys Compd 458:487–491. https://doi.org/10.1016/j.jallcom.2007.04.019

    Article  Google Scholar 

  36. Wang Z, Yang W, Liu X (2014) Electrical properties of poly(arylene ether nitrile)/graphene nanocomposites prepared by in situ thermal reduction route. J Polym Res. https://doi.org/10.1007/s10965-014-0358-y

    Google Scholar 

  37. Ooi F, Duchene JS, Qiu J et al (2015) A facile solvothermal synthesis of octahedral Fe3O4 nanoparticles. Small 11:2649–2653. https://doi.org/10.1002/smll.201401954

    Article  Google Scholar 

  38. Vetter J, Novák P, Wagner MR et al (2005) Ageing mechanisms in lithium-ion batteries. J Power Sources 147:269–281. https://doi.org/10.1016/j.jpowsour.2005.01.006

    Article  Google Scholar 

  39. Okada S, Yamaki J (1989) Effect of particle size on iron-phthalocyanine cathodes in secondary lithium cells 136:2437–2440

    Google Scholar 

  40. Zhang W, Du L, Chen Z et al (2016) ZnO nanocrystals as anode electrodes for lithium-ion batteries. J Nanomater 2016:10–12. https://doi.org/10.1155/2016/8056302

    Google Scholar 

  41. Jiang Y, Jiang Z-J, Yang L et al (2015) A high-performance anode for lithium ion batteries: Fe3O4 microspheres encapsulated in hollow graphene shells. J Mater Chem A 3:11847–11856. https://doi.org/10.1039/C5TA01848J

    Article  Google Scholar 

  42. Kim N, Oh C, Kim J et al (2017) High-performance Li-ion battery anodes based on silicon–graphene self-assemblies. J Electrochem Soc 164:A6075–A6083. https://doi.org/10.1149/2.0101701jes

    Article  Google Scholar 

  43. Okada S, Yamaki J-I (1989) Intercalation mechanism in lithium/iron-phthalocyanine cells. J Electrochem Soc 136:340–344. https://doi.org/10.1149/1.2096631

    Article  Google Scholar 

  44. Chen J, Guo J, Zhang T et al (2016) Electrochemical properties of carbonyl substituted phthalocyanines as electrode materials for lithium-ion batteries. RSC Adv 6:52850–52853. https://doi.org/10.1039/C6RA09826F

    Article  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge the support of the Academic Support Program of University of Electronic Science and Technology of China (UESTC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Zhao.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10853_2018_2159_MOESM1_ESM.docx

Supplementary material 1 The synthetic route of the FePc, XRD and BET characterization of the materials, size distribution analysis of the FePc, equivalent circuit model for EIS measurements, TGA curves

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, D., Xue, W., Zhao, R. et al. Reduced graphene oxide/Fe-phthalocyanine nanosphere cathodes for lithium-ion batteries. J Mater Sci 53, 9170–9179 (2018). https://doi.org/10.1007/s10853-018-2159-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2159-x

Keywords

Navigation