Skip to main content
Log in

Anionic NbO-type copper organic framework decorated with carboxylate groups for light hydrocarbons separation under ambient conditions

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Light hydrocarbons are important raw materials for industrial products and fine chemicals. The storage and separation of C1–C3 hydrocarbons are vital to their practical use. Here, we report efficient C1–C3 hydrocarbon adsorption and separation with a NbO-type anionic copper metal–organic framework with uncoordinated –COO groups ([Cu2(L)·(H2O)2]·2H2O·3DMA·(CH3)2NH2) (1). Complex 1 exhibited large C2H2 (190 cm3 g−1), C2H4 (147 cm3 g−1), C2H6 (156 cm3 g−1), C3H6 (170 cm3 g−1), and C3H8 (173 cm3 g−1) uptakes and high selectivities for C2H2/CH4 (32.3), C3H6/CH4 (152), and C3H8/CH4 (127) under ambient conditions. The excellent cycling performance of the material was reflected by only 9.2 and 10.9% losses of the C2H2 and C3H6 storage capacities even after ten cycles of adsorption–desorption tests. First-principles calculations and Grand canonical Monte Carlo simulations further revealed that not only the open metal sites but also the –COO groups played a key role in the high C2–C3 hydrocarbon uptakes. The results obtained in this study suggest that anionic 1 is a promising candidate for light hydrocarbon adsorption and natural gas purification at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Chen CX, Wei Z, Jiang JJ, Fan YZ, Zheng SP, Cao CC, Li YH, Fenske D, Su CY (2016) Precise modulation of the breathing behavior and pore surface in Zr-MOFs by reversible post-synthetic variable-spacer installation to fine-tune the expansion magnitude and sorption properties. Angew Chem Int Ed 55:9932–9936

    Article  Google Scholar 

  2. He Y, Krishna R, Chen B (2012) Metal–organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons. Energy Environ Sci 5:9107–9120

    Article  Google Scholar 

  3. Assen AH, Belmabkhout Y, Adil K, Bhatt PM, Xue DX, Jiang H, Eddaoudi M (2015) Ultra-tuning of the rare-earth fcu-MOF aperture size for selective molecular exclusion of branched paraffins. Angew Chem Int Ed 54:14353–14358

    Article  Google Scholar 

  4. Zhao Y, Wang J, Bao Z, Xing H, Zhang Z, Su B, Yang Q, Yang Y, Ren Q (2018) Adsorption separation of acetylene and ethylene in a highly thermostable microporous metal–organic framework. Sep Purif Technol 195:238–243

    Article  Google Scholar 

  5. Li B, Cui X, O’Nolan D, Wen HM, Jiang M, Krishna R, Wu H, Lin RB, Chen YS, Yuan D, Xing H, Zhou W, Ren Q, Qian G, Zaworotko MJ, Chen BL (2017) An ideal molecular sieve for acetylene removal from ethylene with record selectivity and productivity. Adv Mater 29:1704210–1704216

    Article  Google Scholar 

  6. Magnowski NBK, Avila AM, Lin CCH, Shi M, Kuznicki SM (2011) Extraction of ethane from natural gas by adsorption on modified ETS-10. Chem Eng Sci 66:1697–1701

    Article  Google Scholar 

  7. Pang J, Jiang F, Wu M, Liu C, Su K, Lu W, Yuan D, Hong M (2015) A porous metal–organic framework with ultrahigh acetylene uptake capacity under ambient conditions. Nat Commun 6:7575–7582

    Article  Google Scholar 

  8. Zhang Z, Yang Q, Cui X, Yang L, Bao Z, Ren Q, Xing H (2017) Sorting of C4 olefins with interpenetrated hybrid ultramicroporous materials by combining molecular recognition and size-sieving. Angew Chem Int Ed 56:16282–16287

    Article  Google Scholar 

  9. Tang FS, Lin RB, Lin RG, Zhao JCG, Chen B (2018) Separation of C2 hydrocarbons from methane in a microporous metal–organic framework. J Solid State Chem 258:346–350

    Article  Google Scholar 

  10. Cadiau A, Adil K, Bhatt PM, Belmabkhout Y, Eddaoudi MA (2016) Metal–organic framework-based splitter for separating propylene from propane. Science 353:137–140

    Article  Google Scholar 

  11. Yang L, Cui X, Yang Q, Qian S, Wu H, Bao Z, Zhang Z, Ren Q, Zhou W, Chen B, Xing H (2018) A single-molecule propyne trap: highly efficient removal of propyne from propylene with anion-pillared ultramicroporous materials. Adv Mater 30:1705374–1705382

    Article  Google Scholar 

  12. Zhao M, Yuan K, Wang Y, Li G, Guo J, Gu L, Hu W, Zhao H, Tang Z (2016) Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature 539:76–80

    Article  Google Scholar 

  13. He Y, Li B, O’Keeffe M, Chen B (2014) Multifunctional metal–organic frameworks constructed from meta-benzenedicarboxylate units. Chem Soc Rev 43:5618–5656

    Article  Google Scholar 

  14. Lin X, Jia J, Zhao X, Thomas KM, Blake AJ, Walker GS, Champness NR, Hubberstey P, Schroder M (2006) High H2 adsorption by coordination-framework materials. Angew Chem Int Ed 45:7358–7364

    Article  Google Scholar 

  15. Rao X, Cai J, Yu J, He Y, Wu C, Zhou W, Yildirim T, Chen B, Qian GD (2013) A microporous metal–organic framework with both open metal and Lewis basic pyridyl sites for high C2H2 and CH4 storage at room temperature. Chem Commun 49:6719–6721

    Article  Google Scholar 

  16. Li B, Wen HM, Wang H, Wu H, Tyagi M, Yildirim T, Zhou W, Chen B (2014) A porous metal–organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity. J Am Chem Soc 136:6207–6210

    Article  Google Scholar 

  17. Yang S, Ramirez-Cuesta AJ, Newby R, Garcia-Sakai V, Manuel P, Callear SK, Campbell SI, Tang CC, Schroder M (2014) Supramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic framework. Nat Commun 7:121–129

    Google Scholar 

  18. He Y, Xiang S, Zhang Z, Xiong S, Fronczek FR, Krishna R, O’Keeffe M, Chen B (2012) A microporous lanthanide-tricarboxylate framework with the potential for purification of natural gas. Chem Commun 48:10856–10858

    Article  Google Scholar 

  19. Ling Y, Jiao J, Zhang M, Liu H, Bai D, Feng Y, He Y (2016) A porous lanthanide metal–organic framework based on a flexible cyclotriphosphazene-functionalized hexacarboxylate exhibiting selective gas adsorption. CrystEngComm 18:6254–6261

    Article  Google Scholar 

  20. Liao PQ, Chen XW, Liu SY, Li XY, Xu YT, Tang M, Rui Z, Ji H, Zhang JP, Chen XM (2016) Putting an ultrahigh concentration of amine groups into a metal–organic framework for CO2 capture at low pressures. Chem Sci 7:6528–6533

    Article  Google Scholar 

  21. Luo F, Yan C, Dang L, Krishna R, Zhou W, Wu H, Dong X, Han Y, Hu TL, O’Keeffe M, Wang L, Luo M, Lin RB, Chen B (2016) UTSA-74: a MOF-74 isomer with two accessible binding sites per metal center for highly selective gas separation. J Am Chem Soc 138:5678–5684

    Article  Google Scholar 

  22. Bao SJ, Krishna R, He YB, Qin JS, Su ZM, Li SL, Xie W, Du DY, He WW, Zhang SR, Lan YQ (2015) A stable metal–organic framework with suitable pore sizes and rich uncoordinated nitrogen atoms on the internal surface of micropores for highly efficient CO2 capture. J Mater Chem A 3:7361–7367

    Article  Google Scholar 

  23. Kim SY, Kim AR, Yoon JW, Kim HJ, Bae YS (2018) Creation of mesoporous defects in a microporous metal–organic framework by an acetic acid-fragmented linker co-assembly and its remarkable effects on methane uptake. Chem Eng J 335:94–100

    Article  Google Scholar 

  24. Bai J, Chen FL, Jiang DH, He YB (2017) A rare Pb9 cluster-organic framework constructed from a flexible cyclotriphosphazene-functionalized hexacarboxylate exhibiting selective gas separation. Inorg Chem Front 4:1501–1508

    Article  Google Scholar 

  25. Li L, Wang XS, Liang J, Huang YB, Li HF, Lin ZJ, Cao R (2016) Water-stable anionic metal–organic framework for highly selective separation of methane from natural gas and pyrolysis gas. ACS Appl Mater Interfaces 8:9777–9781

    Article  Google Scholar 

  26. Wen HM, Chang G, Li B, Lin RB, Hu TL, Zhou W, Chen B (2017) Highly enhanced gas uptake and selectivity via incorporating methoxy groups into a microporous metal–organic framework. Cryst Growth Des 17:2172–2177

    Article  Google Scholar 

  27. Zhang MX, Li B, Li YZ, Wang Q, Zhang W, Chen B, Li S, Pan Y, You X, Bai J (2016) Finely tuning MOFs towards high performance in C2H2 storage: synthesis and properties of a new MOF-505 analogue with an inserted amide functional group. Chem Commun 52:7241–7244

    Article  Google Scholar 

  28. Liu XP, Xiao ZY, Xu J, Xu WB, Sang PP, Zhao LM, Zhu HY, Sun DF, Guo WY (2016) A NbO-type copper metal–organic framework decorated with carboxylate groups exhibiting highly selective CO2 adsorption and separation of organic dyes. J Mater Chem A 4:13844–13851

    Article  Google Scholar 

  29. Gupta A, Chempath S, Sanborn MJ, Clark AL, Snurr QR (2003) Object-oriented programming paradigms for molecular modeling. Mol Simul 29:29–46

    Article  Google Scholar 

  30. Delley BJ (2000) From molecules to solids with the DMol3 approach. Chem Phys 113:7756–7764

    Google Scholar 

  31. Wen HM, Wang H, Li B, Cui Y, Wang H, Qian G, Chen B (2016) A microporous metal–organic framework with Lewis basic nitrogen sites for high C2H2 storage and significantly enhanced C2H2/CO2 separation at ambient conditions. Inorg Chem 55:7214–7218

    Article  Google Scholar 

  32. Duan X, Wang H, Ji Z, Cui Y, Yang Y, Qian G (2017) A novel NbO-type metal–organic framework for highly separation of methane from C2-hydrocarbon at room temperature. Mater Lett 196:112–114

    Article  Google Scholar 

  33. Liu K, Ma DX, Li B, Li Y, Yao KX, Zhang ZJ, Han Y, Shi Z (2014) High storage capacity and separation selectivity for C2 hydrocarbons over methane in the metal–organic framework Cu–TDPAT. J Mater Chem A 2:15823–15828

    Article  Google Scholar 

  34. Yang YY, Lin ZJ, Liu TT, Liang J, Cao R (2015) Synthesis, structures and physical properties of mixed-ligand coordination polymers based on a V-shaped dicarboxylic ligand. CrystEngComm 17:1381–1388

    Article  Google Scholar 

  35. Xiang S, Zhou W, Gallegos JM, Liu Y, Chen B (2009) Exceptionally high acetylene uptake in a microporous metal–organic framework with open metal sites. J Am Chem Soc 131:12415–12419

    Article  Google Scholar 

  36. Li JR, Kuppler RJ, Zhou HC (2009) Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev 38:1477–1504

    Article  Google Scholar 

  37. Nie Y, Li L, Wei ZD (2015) Recent advancements in Pt and Pt-Free catalysts for oxygen reduction reaction. Chem Soc Rev 44:2168–2201

    Article  Google Scholar 

  38. He Y, Zhang Z, Xiang S, Fronczek FR, Krishna R, Chen B (2012) A robust doubly interpenetrated metal–organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbons. Chem Commun 48:6493–6495

    Article  Google Scholar 

  39. Bloch ED, Queen WL, Krishna R, Zadrozny JM, Brown CM, Long JR (2012) Hydrocarbon separations in a metal–organic framework with open iron(II) coordination sites. Science 335:1606–1610

    Article  Google Scholar 

  40. Gao S, Morris CG, Lu Z, Yan Y, Godfrey WHG, Murray C, Tang CC, Thomas KM, Yang S, Schröder M (2016) Selective hysteretic sorption of light hydrocarbons in a flexible metal–organic framework material. Chem Mater 28:2331–2340

    Article  Google Scholar 

  41. Zhang ZJ, Xiang SC, Rao XT, Zheng Q, Fronczek FR, Qian GD, Chen BL (2010) A rod packing microporous metal–organic framework with open metal sites for selective guest sorption and sensing of nitrobenzene. Chem Commun 46:7205–7207

    Article  Google Scholar 

  42. Das MC, Xu H, Xiang SC, Zhang ZJ, Arman HD, Qian GD, Chen BL (2017) A new approach to construct a doubly interpenetrated microporous metal–organic framework of primitive cubic net for highly selective sorption of small hydrocarbon molecules. Chem Eur J 17:7817–7822

    Article  Google Scholar 

  43. Guo HC, Shi F, Ma ZF, Liu XQ (2013) Simulation of separation of C2H6 from CH4 using zeolitic imidazolate frameworks. Mol Simul 40:349–360

    Article  Google Scholar 

  44. Fischer M, Hoffmann F, Froba M (2010) New microporous materials for acetylene storage and C2H2/CO2 separation: insights from molecular simulations. Chem Phys Chem 11:2220–2229

    Article  Google Scholar 

  45. Cui XL, Chen KJ, Xing HB, Yang QW, Krishna R, Bao ZB, Wu H, Zhou W, Dong XL, Han Y, Li B, Ren QL, Zaworotko MJ, Chen BL (2016) Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 353:141–144

    Article  Google Scholar 

  46. Zheng B, Yang Z, Bai J, Li Y, Li S (2012) High and selective CO2 capture by two mesoporous acylamide-functionalized rht-type metal–organic frameworks. Chem Commun 48:7025–7027

    Article  Google Scholar 

  47. Chen Z, Xiang S, Arman HD, Mondal JU, Li P, Zhao D, Chen B (2011) Three-dimensional pillar-layered copper(II) metal–organic framework with immobilized functional OH groups on pore surfaces for highly selective CO2/CH4 and C2H2/CH4 gas sorption at room temperature. Inorg Chem 50:3442–3446

    Article  Google Scholar 

  48. Bae YS, Lee CY, Kim KC, Farha OK, Nickias P, Hupp JT, Nguyen ST, Snurr RQ (2012) High propene/propane selectivity in isostructural metal–organic frameworks with high densities of open metal sites. Angew Chem Int Ed 51:1857–1860

    Article  Google Scholar 

  49. Lamia N, Jorge M, Granato MA, Almeida Paz FA, Chevreau H, Rodrigues AE (2009) Adsorption of propane, propylene and isobutane on a metal–organic framework: molecular simulation and experiment. Chem Eng Sci 64:3246–3259

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (21776315), the Program for Natural Science Foundation of Shandong Province (ZR2017MB053, ZR2016BL12), the Fundamental Research Funds for the Central Universities (17CX02031A, 15CX05068A and 15CX08010A) and Qingdao independent innovation program (16-5-1-88-jch).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lianming Zhao or Wenyue Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 255 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, X., Li, J. et al. Anionic NbO-type copper organic framework decorated with carboxylate groups for light hydrocarbons separation under ambient conditions. J Mater Sci 53, 8866–8877 (2018). https://doi.org/10.1007/s10853-018-2155-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2155-1

Keywords

Navigation