Advertisement

Journal of Materials Science

, Volume 53, Issue 12, pp 8699–8719 | Cite as

Recent progress in the modification of carbon materials and their application in composites for electromagnetic interference shielding

  • Ahsan Nazir
  • Haojie Yu
  • Li Wang
  • Muhammad Haroon
  • Raja Summe Ullah
  • Shah Fahad
  • Kaleem-ur-Rahman Naveed
  • Tarig Elshaarani
  • Amin Khan
  • Muhammad Usman
Review

Abstract

With the development in the modern technologies such as telecommunication instruments and scientific electronic devices, large amount of the electromagnetic radiations are produced, which lead to harmful effect on the highly sensitive electronic devices as well as on the health of human beings. To minimize the effect of electromagnetic radiations produced by different technologies, more efficient shielding materials are required which must be cost-effective, lightweight and good corrosion resistive. In this review, we focused on the shielding materials based on composites of carbon nanotubes and graphene. The typical surface modification of carbon nanotubes and graphene to optimize their interactions with polymers matrix has also summarized. It was found that the composites based on these carbon fillers were more efficient for electromagnetic interference shielding due to their unique properties (i.e., superior electrical, mechanical and thermal) together with lightweight, easy processing. Hence, the carbon nanotubes and graphene-based composites are excellent shielding materials against the electromagnetic radiations.

Notes

Compliance with ethical standards

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, the manuscript entitled, “Recent progress in the modification of carbon materials and their application in composites for electromagnetic interference shielding.”

References

  1. 1.
    Namai A, Sakurai S, Nakajima M et al (2009) Synthesis of an electromagnetic wave absorber for high-speed wireless communication. J Am Chem Soc 131:1170–1173CrossRefGoogle Scholar
  2. 2.
    Bhargavi KB, Nageswar P (2013) Mobile phone radiation effects on human health. Int J Comput Eng Res 3:196–203Google Scholar
  3. 3.
    Pathania A (2014) Human exposure to electromagnetic radiations. Int J Eng Res Dev 10:49–56Google Scholar
  4. 4.
    Bhattacharjee S (2014) Protective measures to minimize the electromagnetic radiation. Adv Electron Electr Eng 4:375–380Google Scholar
  5. 5.
    MS Ankur Mahajan (2012) Human health and electromagnetic radiations. Int J Eng Innov Tech 1:95–97Google Scholar
  6. 6.
    Singh K, Nagaraj A, Yousuf A, Ganta S, Pareek S, Vishnani P (2016) Effect of electromagnetic radiations from mobile phone base stations on general health and salivary function. J Int Soc Prev Community Dent 6:54–59CrossRefGoogle Scholar
  7. 7.
    Jiang SX, Guo RH (2011) Electromagnetic shielding and corrosion resistance of electroless Ni–P/Cu–Ni multilayer plated polyester fabric. Surf Coat Tech 205:4274–4279CrossRefGoogle Scholar
  8. 8.
    Zhang CS, Ni QQ, Fu SY, Kurashiki K (2007) Electromagnetic interference shielding effect of nanocomposites with carbon nanotube and shape memory polymer. Compos Sci Technol 67:2973–2980CrossRefGoogle Scholar
  9. 9.
    Eddib AA, Chung DDL (2017) The importance of the electrical contact between specimen and testing fixture in evaluating the electromagnetic interference shielding effectiveness of carbon materials. Carbon 117:427–436CrossRefGoogle Scholar
  10. 10.
    Kato Y, Horibe M, Ata S, Yamada T, Hata K (2017) Stretchable electromagnetic-interference shielding materials made of a long single-walled carbon-nanotube-elastomer composite. RSC Adv 7:10841–10847CrossRefGoogle Scholar
  11. 11.
    Jung J, Lee H, Ha I et al (2017) Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl Mater Interfaces 9:44609–44616CrossRefGoogle Scholar
  12. 12.
    Chung DDL (2000) Materials for electromagnetic interference shielding. J Mater Eng Perform 9:350–354CrossRefGoogle Scholar
  13. 13.
    Geetha S, Kumar KKS, Rao CRK, Vijayan M, Trivedi DC (2009) EMI Shielding methods and materials-a review. J Appl Polym Sci 112:2073–2086CrossRefGoogle Scholar
  14. 14.
    Joshi A, Datar S (2015) Carbon nanostructure composite for electromagnetic interference shielding. Pramana-J Phys 84:1099–1116CrossRefGoogle Scholar
  15. 15.
    Dhakate SR, Subhedar KM, Singh BP (2015) Polymer nanocomposite foam filled with carbon nanomaterials as an efficient electromagnetic interference shielding material. RSC Adv 5:43036–43057CrossRefGoogle Scholar
  16. 16.
    Wang LL, Tay BK, See KY, Sun Z, Tan LK, Lua D (2009) Electromagnetic interference shielding effectiveness of carbon-based materials prepared by screen printing. Carbon 47:1905–1910CrossRefGoogle Scholar
  17. 17.
    Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39:279–285CrossRefGoogle Scholar
  18. 18.
    Bhingardive V, Sharma M, Suwas S, Madras G, Bose S (2015) Polyvinylidene fluoride based lightweight and corrosion resistant electromagnetic shielding materials. RSC Adv 5:35909–35916CrossRefGoogle Scholar
  19. 19.
    Kim HR, Fujimori K, Kim BS, Kim IS (2012) Lightweight nanofibrous EMI shielding nanowebs prepared by electrospinning and metallization. Compos Sci Technol 72:1233–1239CrossRefGoogle Scholar
  20. 20.
    Jiang G, Gilbert M, Hitt DJ, Wilcox GD, Balasubramanian K (2002) Preparation of nickel coated mica as a conductive filler. Compos Pt A Appl Sci Manuf 33:745–751CrossRefGoogle Scholar
  21. 21.
    Kumar R, Dhakate SR, Gupta T, Saini P, Singh BP, Mathur RB (2013) Effective improvement of the properties of light weight carbon foam by decoration with multi-wall carbon nanotubes. J Mater Chem A 1:5727–5735CrossRefGoogle Scholar
  22. 22.
    Huo J, Wang L, Yu H (2009) Polymeric nanocomposites for electromagnetic wave absorption. J Mater Sci 44:3917–3927CrossRefGoogle Scholar
  23. 23.
    Jia LC, Yan DX, Cui CH, Jiang X, Ji X, Li ZM (2015) Electrically conductive and electromagnetic interference shielding of polyethylene composites with devisable carbon nanotube networks. J Mater Chem C 3:9369–9378CrossRefGoogle Scholar
  24. 24.
    Al-Saleh MH, Sundararaj U (2009) Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47:1738–1746CrossRefGoogle Scholar
  25. 25.
    Bhardwaj P, Singh K (2014) Carbon nanomaterials reinforced di-glycidyl ether of bisphenol A (DGEBA) composites for improved mechanical and electromagnetic interference shielding properties Int J Eng Manag Res 4:138–153Google Scholar
  26. 26.
    Maiti S, Shrivastava NK, Suin S, Khatua BB (2013) Polystyrene/MWCNT/Graphite nanoplate nanocomposites: efficient electromagnetic interference shielding material through graphite nanoplate-MWCNT-graphite nanoplate networking. ACS Appl Mater Interfaces 5:4712–4724CrossRefGoogle Scholar
  27. 27.
    Saini P, Choudhary V, Sood KN, Dhawan SK (2009) Electromagnetic interference shielding behavior of polyaniline/graphite composites prepared by in situ emulsion pathway. J Appl Polym Sci 113:3146–3155CrossRefGoogle Scholar
  28. 28.
    Joshi A, Bajaj A, Singh R, Alegaonkar PS, Balasubramanian K, Datar S (2013) Graphene nanoribbon-PVA composite as EMI shielding material in the X band. Nanotechnology 24:8CrossRefGoogle Scholar
  29. 29.
    Shen B, Zhai W, Tao M, Ling J, Zheng W (2013) Lightweight multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl Mater Interfaces 5:11383–11391CrossRefGoogle Scholar
  30. 30.
    Chen Z, Xu C, Ma C, Ren W, Cheng H-M (2013) Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater 25:1296–1300CrossRefGoogle Scholar
  31. 31.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  32. 32.
    Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680CrossRefGoogle Scholar
  33. 33.
    Yu MF, Files BS, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84:5552–5555CrossRefGoogle Scholar
  34. 34.
    Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581CrossRefGoogle Scholar
  35. 35.
    Miao M (2011) Electrical conductivity of pure carbon nanotube yarns. Carbon 49:3755–3761CrossRefGoogle Scholar
  36. 36.
    Yang YL, Gupta MC (2005) Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. Nano Lett 5:2131–2134CrossRefGoogle Scholar
  37. 37.
    Yang YL, Gupta MC, Dudley KL, Lawrence RW (2005) A comparative study of EMI shielding properties of carbon nanofiber and multi-walled carbon nanotube filled polymer composites. J Nanosci Nanotechnol 5:927–931CrossRefGoogle Scholar
  38. 38.
    Mehdipour A, Rosca ID, Trueman CW, Sebak AR, Van Hoa S (2012) Multiwall carbon nanotube-eoxy composites with high shielding effectiveness for aeronautic applications. IEEE T Electromagn C 54:28–36CrossRefGoogle Scholar
  39. 39.
    Kim HM, Kim K, Lee CY et al (2004) Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl Phys Lett 84:589–591CrossRefGoogle Scholar
  40. 40.
    Das NC, Maiti S (2008) Electromagnetic interference shielding of carbon nanotube/ethylene vinyl acetate composites. J Mater Sci 43:1920–1925CrossRefGoogle Scholar
  41. 41.
    Li Y, Chen C, Zhang S, Ni Y, Huang J (2008) Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyacrylate composite films. Appl Surf Sci 254:5766–5771CrossRefGoogle Scholar
  42. 42.
    Huang Y, Li N, Ma Y et al (2007) The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites. Carbon 45:1614–1621CrossRefGoogle Scholar
  43. 43.
    Chaudhary A, Kumari S, Kumar R et al (2016) Lightweight and easily foldable MCMB-MWCNTs composite paper with exceptional electromagnetic interference shielding. ACS Appl Mater Interfaces 8:10600–10608CrossRefGoogle Scholar
  44. 44.
    Park JG, Louis J, Cheng QF et al (2009) Electromagnetic interference shielding properties of carbon nanotube buckypaper composites. Nanotechnology 20:7Google Scholar
  45. 45.
    Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  46. 46.
    Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162CrossRefGoogle Scholar
  47. 47.
    Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRefGoogle Scholar
  48. 48.
    Cao C, Mukherjee S, Liu J et al (2017) Role of graphene in enhancing the mechanical properties of TiO2/graphene heterostructures. Nanoscale 9:11678–11684CrossRefGoogle Scholar
  49. 49.
    IA Ovid ko (2013) Mechanical properties of graphene. Rev Adv Mater Sci 34:1–11Google Scholar
  50. 50.
    Wang Chan Yuan WXX, Sheng Cao Mao (2016) Progress in research on lightweight graphene-based EMI shielding materials. J Mater Eng 44:109–118Google Scholar
  51. 51.
    Wang M, Wu F, Sun M (2014) Graphene based composite for electromagnetic interference shielding. Chin Sci Bull 59:1681–1687Google Scholar
  52. 52.
    Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110:5366–5397CrossRefGoogle Scholar
  53. 53.
    Goh PS, Ismail AF, Aziz M (2009) Effect of acid oxidation on the dispersion property of multiwalled carbon nanotubes. AIP Conf Proc 1136:224–228CrossRefGoogle Scholar
  54. 54.
    Yan D, Wang F, Zhao Y et al (2009) Production of a high dispersion of silver nanoparticles on surface-functionalized multi-walled carbon nanotubes using an electrostatic technique. Mater Lett 63:171–173CrossRefGoogle Scholar
  55. 55.
    Kuznetsova A, Popova I, Yates JT et al (2001) Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies. J Am Chem Soc 123:10699–10704CrossRefGoogle Scholar
  56. 56.
    Kim SW, Kim T, Kim YS et al (2012) Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50:3–33CrossRefGoogle Scholar
  57. 57.
    Spitalsky Z, Matejka L, Slouf M et al (2009) Modification of carbon nanotubes and Its effect on properties of carbon nanotube/epoxy nanocomposites. Polym Compos 30:1378–1387CrossRefGoogle Scholar
  58. 58.
    Holzinger M, Steinmetz J, Samaille D et al (2004) 2 + 1 cycloaddition for cross-linking SWCNTs. Carbon 42:941–947CrossRefGoogle Scholar
  59. 59.
    Holzinger M, Abraha J, Whelan P et al (2003) Functionalization of single-walled carbon nanotubes with (R-)oxycarbonyl nitrenes. J Am Chem Soc 125:8566–8580CrossRefGoogle Scholar
  60. 60.
    Ren FJ, Yu HJ, Wang L, Saleem M, Tian ZF, Ren PF (2014) Current progress on the modification of carbon nanotubes and their application in electromagnetic wave absorption. RSC Adv 4:14419–14431CrossRefGoogle Scholar
  61. 61.
    Doyle CD, Tour JM (2009) Environmentally friendly functionalization of single walled carbon nanotubes in molten urea. Carbon 47:3215–3218CrossRefGoogle Scholar
  62. 62.
    Le Floch F, Thuaire A, Bidan G, Simonato JP (2009) The electrochemical signature of functionalized single-walled carbon nanotubes bearing electroactive groups. Nanotechnology 20:145705CrossRefGoogle Scholar
  63. 63.
    Sun YP, Huang WJ, Lin Y et al (2001) Soluble dendron-functionalized carbon nanotubes: preparation, characterization, and properties. Chem Mater 13:2864–2869CrossRefGoogle Scholar
  64. 64.
    Hamon MA, Hui H, Bhowmik P, Itkis HME, Haddon RC (2002) Ester-functionalized soluble single-walled carbon nanotubes. Appl Phys A-mater 74:333–338CrossRefGoogle Scholar
  65. 65.
    Meng L, Fu C, Lu Q (2009) Advanced technology for functionalization of carbon nanotubes. Prog Nat Sci 19:801–810CrossRefGoogle Scholar
  66. 66.
    Tuncel D (2011) Non-covalent interactions between carbon nanotubes and conjugated polymers. Nanoscale 3:3545–3554CrossRefGoogle Scholar
  67. 67.
    Blanch AJ, Lenehan CE, Quinton JS (2010) Optimizing surfactant concentrations for dispersion of single-walled carbon nanotubes in aqueous solution. J Phys Chem B 114:9805–9811CrossRefGoogle Scholar
  68. 68.
    Czanikova K, Krupa I, Ilcikova M et al (2012) Photo-actuating materials based on elastomers and modified carbon nanotubes. J Nanophotonics 6:063522CrossRefGoogle Scholar
  69. 69.
    Georgakilas V, Tzitzios V, Gournis D, Petridis D (2005) Attachment of magnetic nanoparticles on carbon nanotubes and their soluble derivatives. Chem Mater 17:1613–1617CrossRefGoogle Scholar
  70. 70.
    Cheng F, Adronov A (2006) Noncovalent functionalization and solubilization of carbon nanotubes by using a conjugated Zn-porphyrin polymer. Chem-Eur J 12:5053–5059CrossRefGoogle Scholar
  71. 71.
    Mu YY, Liang HP, Hu JS, Jiang L, Wan LJ (2005) Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. J Phys Chem B 109:22212–22216CrossRefGoogle Scholar
  72. 72.
    Paul R, Kumbhakar P, Mitra AK (2011) Green luminescence from triphenylphosphine functionalized single-wall carbon nanotubes. Appl Surf Sci 257:6699–6703CrossRefGoogle Scholar
  73. 73.
    O’Connell MJ, Boul P, Ericson LM et al (2001) Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett 342:265–271CrossRefGoogle Scholar
  74. 74.
    Star A, Stoddart JF (2002) Dispersion and solubilization of single-walled carbon nanotubes with a hyperbranched polymer. Macromolecules 35:7516–7520CrossRefGoogle Scholar
  75. 75.
    Steuerman DW, Star A, Narizzano R et al (2002) Interactions between conjugated polymers and single-walled carbon nanotubes. J Phys Chem B 106:3124–3130CrossRefGoogle Scholar
  76. 76.
    Star A, Liu Y, Grant K et al (2003) Noncovalent side-wall functionalization of single-walled carbon nanotubes. Macromolecules 36:553–560CrossRefGoogle Scholar
  77. 77.
    Liu P (2005) Modifications of carbon nanotubes with polymers. Eur Polym J 41:2693–2703CrossRefGoogle Scholar
  78. 78.
    Charman M, Leonardi F, Dominguez S, Bissuel C, Derail C (2011) Dispersion of multiwalled carbon nanotubes in a rubber matrix using an internal mixer: effects on rheological and electrical properties. J Polym Sci Pol Phys 49:1597–1604CrossRefGoogle Scholar
  79. 79.
    Chadwick RC, Fong D, Rice NA, Brook MA, Adronov A (2015) Bulk dispersion of single-walled carbon nanotubes in silicones using diblock copolymers. J Polym Sci Pol Chem 53:265–273CrossRefGoogle Scholar
  80. 80.
    Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Pt A Appl Sci Manuf 41:1345–1367CrossRefGoogle Scholar
  81. 81.
    Salavagione HJ, Martinez G, Ellis G (2011) Recent advances in the covalent modification of graphene with polymers. Macromol Rapid Comm 32:1771–1789CrossRefGoogle Scholar
  82. 82.
    Zheng W, Shen B, Zhai W (2013) Surface functionalization of graphene with polymers for enhanced properties. New Progress on Graphene Research:Ch. 08Google Scholar
  83. 83.
    Lee SH, Dreyer DR, An J et al (2010) Polymer brushes via controlled, surface-initiated atom transfer radical polymerization (ATRP) from graphene oxide. Macromol Rapid Commun 31:281–288CrossRefGoogle Scholar
  84. 84.
    Goncalves G, Marques PAAP, Barros Timmons A et al (2010) Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J Mater Chem 20:9927–9934CrossRefGoogle Scholar
  85. 85.
    Fang M, Wang K, Lu H, Yang Y, Nutt S (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19:7098–7105CrossRefGoogle Scholar
  86. 86.
    Yu D, Yang Y, Durstock M, Baek JB, Dai L (2010) Soluble P3HT-grafted graphene for efficient bilayer-heterojunction photovoltaic devices. ACS Nano 4:5633–5640CrossRefGoogle Scholar
  87. 87.
    Zhu J, Li Y, Chen Y et al (2011) Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting. Carbon 49:1900–1905CrossRefGoogle Scholar
  88. 88.
    Mallakpour S, Abdolmaleki A, Borandeh S (2014) Covalently functionalized graphene sheets with biocompatible natural amino acids. Appl Surf Sci 307:533–542CrossRefGoogle Scholar
  89. 89.
    Shen B, Zhai W, Chen C, Lu D, Wang J, Zheng W (2011) Melt blending in situ enhances the interaction between polystyrene and graphene through π–π stacking. ACS Appl Mater Interfaces 3:3103–3109CrossRefGoogle Scholar
  90. 90.
    Xu Y, Bai H, Lu G, Li C, Shi G (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130:5856CrossRefGoogle Scholar
  91. 91.
    Wang Y, Chen X, Zhong Y, Zhu F, Loh KP (2009) Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl Phys Lett 95:063302CrossRefGoogle Scholar
  92. 92.
    Coluci VR, Martinez DST, Honorio JG et al (2014) Noncovalent interaction with graphene oxide: the crucial role of oxidative debris. J Phys Chem C 118:2187–2193CrossRefGoogle Scholar
  93. 93.
    Dubnikova I, Kuvardina E, Krasheninnikov V, Lomakin S, Tchmutin I, Kuznetsov S (2010) The effect of multiwalled carbon nanotube dimensions on the morphology, mechanical, and electrical properties of melt mixed polypropylene-based composites. J Appl Polym Sci 117:259–272Google Scholar
  94. 94.
    Thomassin JM, Huynen I, Jerome R, Detrembleur C (2010) Functionalized polypropylenes as efficient dispersing agents for carbon nanotubes in a polypropylene matrix; application to electromagnetic interference (EMI) absorber materials. Polymer 51:115–121CrossRefGoogle Scholar
  95. 95.
    Fan Z, Luo G, Zhang Z, Zhou L, Wei F (2006) Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Mater Sci Eng B 132:85–89CrossRefGoogle Scholar
  96. 96.
    Sharma M, Sharma S, Abraham J, Thomas S, Madras G, Bose S (2014) Flexible EMI shielding materials derived by melt blending PVDF and ionic liquid modified MWNTs. Mater Res Express 1:035003CrossRefGoogle Scholar
  97. 97.
    Kum CK, Sung YT, Han MS et al (2006) Effects of morphology on the electrical and mechanical properties of the polycarbonate/multi-walled carbon nanotube composites. Macro Res 14:456–460CrossRefGoogle Scholar
  98. 98.
    Ling Q, Sun J, Zhao Q, Zhou Q (2010) Linear low-density polyethylene/ethylene-octene copolymer/multi-walled carbon nanotube composites with microwave absorbing properties. Polym-Plast Technol 49:481–486CrossRefGoogle Scholar
  99. 99.
    Wang H, Wang G, Li W et al (2012) A material with high electromagnetic radiation shielding effectiveness fabricated using multi-walled carbon nanotubes wrapped with poly(ether sulfone) in a poly(ether ether ketone) matrix. J Mater Chem 22:21232–21237CrossRefGoogle Scholar
  100. 100.
    Basuli U, Chattopadhyay S, Nah C, Chaki TK (2012) Electrical properties and electromagnetic interference shielding effectiveness of multiwalled carbon nanotubes-reinforced EMA nanocomposites. Polym Compos 33:897–903CrossRefGoogle Scholar
  101. 101.
    Li QF, Xu Y, Yoon JS, Chen GX (2011) Dispersions of carbon nanotubes/polyhedral oligomeric silsesquioxanes hybrids in polymer: the mechanical, electrical and EMI shielding properties. J Mater Sci 46:2324–2330CrossRefGoogle Scholar
  102. 102.
    Lin JH, Lin ZI, Pan YJ, Hsieh CT, Huang CL, Lou CW (2016) Thermoplastic polyvinyl alcohol/multiwalled carbon nanotube composites: preparation, mechanical properties, thermal properties, and electromagnetic shielding effectiveness. J Appl Polym Sci 133:43474–43484CrossRefGoogle Scholar
  103. 103.
    Al-Saleh MH, Sundararaj U (2012) Microstructure, electrical, and electromagnetic interference shielding properties of carbon nanotube/acrylonitrile–butadiene–styrene nanocomposites. J Polym Sci Pol Phys 50:1356–1362CrossRefGoogle Scholar
  104. 104.
    Gupta A, Choudhary V (2011) Electrical conductivity and shielding effectiveness of poly(trimethylene terephthalate)/multiwalled carbon nanotube composites. J Mater Sci 46:6416–6423CrossRefGoogle Scholar
  105. 105.
    Zhang K, Li GH, Feng LM et al (2017) Ultralow percolation threshold and enhanced electromagnetic interference shielding in poly(L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks. J Mater Chem C 5:9359–9369CrossRefGoogle Scholar
  106. 106.
    Ganß M, Satapathy BK, Thunga M, Weidisch R, Pötschke P, Jehnichen D (2008) Structural interpretations of deformation and fracture behavior of polypropylene/multi-walled carbon nanotube composites. Acta Mater 56:2247–2261CrossRefGoogle Scholar
  107. 107.
    Thomassin JM, Lou X, Pagnoulle C et al (2007) Multiwalled carbon nanotube/poly(epsilon-caprolactone) nanocomposites with exceptional electromagnetic interference shielding properties. J Phys Chem C 111:11186–11192CrossRefGoogle Scholar
  108. 108.
    Sohi NJS, Rahaman M, Khastgir D (2011) Dielectric property and electromagnetic interference shielding effectiveness of ethylene vinyl acetate-based conductive composites: effect of different type of carbon fillers. Polym Compos 32:1148–1154CrossRefGoogle Scholar
  109. 109.
    Liu Z, Bai G, Huang Y et al (2007) Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon 45:821–827CrossRefGoogle Scholar
  110. 110.
    Mathur RB, Pande S, Singh BP, Dhami TL (2008) Electrical and mechanical properties of multi-walled carbon nanotubes reinforced PMMA and PS composites. Polym Composite 29:717–727CrossRefGoogle Scholar
  111. 111.
    Han MS, Lee YK, Kim WN et al (2009) Effect of multi-walled carbon nanotube dispersion on the electrical, morphological and rheological properties of polycarbonate/multi-walled carbon nanotube composites. Macro Res 17:863–869CrossRefGoogle Scholar
  112. 112.
    Park SH, Theilmann PT, Asbeck PM, Bandaru PR (2010) Enhanced electromagnetic interference shielding through the use of functionalized carbon nanotube-reactive polymer composites. Ieee T Nanotechnol 9:464–469CrossRefGoogle Scholar
  113. 113.
    Saini P, Choudhary V (2013) Enhanced electromagnetic interference shielding effectiveness of polyaniline functionalized carbon nanotubes filled polystyrene composites. J Nanopart Res 15:1415CrossRefGoogle Scholar
  114. 114.
    Im JS, Park IJ, In SJ, Kim T, Lee YS (2009) Fluorination effects of MWCNT additives for EMI shielding efficiency by developed conductive network in epoxy complex. J Fluorine Chem 130:1111–1116CrossRefGoogle Scholar
  115. 115.
    Yun J, Im JS, Kim HI, Lee YS (2011) Effect of oxyfluorination on electromagnetic interference shielding of polyaniline-coated multi-walled carbon nanotubes. Colloid Polym Sci 289:1749–1755CrossRefGoogle Scholar
  116. 116.
    Makeiff DA, Huber T (2006) Microwave absorption by polyaniline-carbon nanotube composites. Synthetic Met 156:497–505CrossRefGoogle Scholar
  117. 117.
    Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK (2009) Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding. Mater Chem Phys 113:919–926CrossRefGoogle Scholar
  118. 118.
    Jelmy EJ, Ramakrishnan S, Kothurkar NK (2016) EMI shielding and microwave absorption behavior of Au-MWCNT/polyaniline nanocomposites. Polym Advan Technol 27:1246–1257CrossRefGoogle Scholar
  119. 119.
    Li H, Lu X, Yuan D et al (2017) Lightweight flexible carbon nanotube/polyaniline films with outstanding EMI shielding properties. J Mater Chem C 5:8694–8698CrossRefGoogle Scholar
  120. 120.
    Ting TH, Jau YN, Yu RP (2012) Microwave absorbing properties of polyaniline/multi-walled carbon nanotube composites with various polyaniline contents. Appl Surf Sci 258:3184–3190CrossRefGoogle Scholar
  121. 121.
    Sobha AP, Sreekala PS, Narayanankutty SK (2017) Electrical, thermal, mechanical and electromagnetic interference shielding properties of PANI/FMWCNT/TPU composites. Prog Org Coat 113:168–174CrossRefGoogle Scholar
  122. 122.
    Yun J, Kim HI (2012) Electromagnetic interference shielding effects of polyaniline-coated multi-wall carbon nanotubes/maghemite nanocomposites. Polym Bull 68:561–573CrossRefGoogle Scholar
  123. 123.
    Kim YY, Yun J, Kim HI, Lee YS (2012) Effect of oxyfluorination on electromagnetic interference shielding of polypyrrole-coated multi-walled carbon nanotubes. J Ind Eng Chem 18:392–398CrossRefGoogle Scholar
  124. 124.
    Moon JS, Gaskill DK (2011) Graphene: its fundamentals to future applications. Ieee T Microw Theory 59:2702–2708CrossRefGoogle Scholar
  125. 125.
    Yu H, Wang T, Wen B et al (2012) Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties. J Mater Chem 22:21679–21685CrossRefGoogle Scholar
  126. 126.
    Modak P, Kondawar SB, Nandanwar DV (2015) Synthesis and characterization of conducting polyaniline/graphene nanocomposites for electromagnetic interference shielding. Proc Mater Sci 10:588–594CrossRefGoogle Scholar
  127. 127.
    Liu P, Huang Y, Zhang X (2015) Synthesis, characterization and excellent electromagnetic wave absorption properties of graphene@CoFe2O4@polyaniline nanocomposites. Synthetic Met 201:76–81CrossRefGoogle Scholar
  128. 128.
    Basavaraja C, Kim WJ, Kim YD, Huh DS (2011) Synthesis of polyaniline-gold/graphene oxide composite and microwave absorption characteristics of the composite films. Mater Lett 65:3120–3123CrossRefGoogle Scholar
  129. 129.
    Mar Bernal M, Martin-Gallego M, Molenberg I, Huynen I, Lopez Manchado MA, Verdejo R (2014) Influence of carbon nanoparticles on the polymerization and EMI shielding properties of PU nanocomposite foams. RSC Adv 4:7911–7918CrossRefGoogle Scholar
  130. 130.
    Puri P, Mehta R, Rattan S (2015) Synthesis of conductive polyurethane/graphite composites for electromagnetic interference shielding. J Electron Mater 44:4255–4268CrossRefGoogle Scholar
  131. 131.
    Gupta A, Varshney S, Goyal A, Sambyal P, Kumar Gupta B, Dhawan SK (2015) Enhanced electromagnetic shielding behaviour of multilayer graphene anchored luminescent TiO2 in PPY matrix. Mater Lett 158:167–169CrossRefGoogle Scholar
  132. 132.
    Modak P, Nandanwar DV, Kondawar SB (2016) Conducting polypyrrole/graphene nanocomposites as potential electromagnetic interference shielding materials in the Ku-band. J Phys Sci 27:137–157CrossRefGoogle Scholar
  133. 133.
    Tripathi SN, Saini P, Gupta D, Choudhary V (2013) Electrical and mechanical properties of PMMA/reduced graphene oxide nanocomposites prepared via in situ polymerization. J Mater Sci 48:6223–6232CrossRefGoogle Scholar
  134. 134.
    Wu T, Xu X, Zhang L, Chen H, Gao J, Liu Y (2014) A polyaniline/graphene nanocomposite prepared by in situ polymerization of polyaniline onto polyanion grafted graphene and its electrochemical properties. RSC Adv 4:7673–7681CrossRefGoogle Scholar
  135. 135.
    Ding P, Su S, Song N, Tang S, Liu Y, Shi L (2014) Highly thermal conductive composites with polyamide-6 covalently-grafted graphene by an in situ polymerization and thermal reduction process. Carbon 66:576–584CrossRefGoogle Scholar
  136. 136.
    Singh K, Ohlan A, Viet Hung P et al (2013) Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale 5:2411–2420CrossRefGoogle Scholar
  137. 137.
    Liang JJ, Wang Y, Huang Y et al (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47:922–925CrossRefGoogle Scholar
  138. 138.
    Liu J, Tang J, Gooding JJ (2012) Strategies for chemical modification of graphene and applications of chemically modified graphene. J Mater Chem 22:12435–12452CrossRefGoogle Scholar
  139. 139.
    Zhang HB, Zheng WG, Yan Q, Jiang ZG, Yu ZZ (2012) The effect of surface chemistry of graphene on rheological and electrical properties of polymethylmethacrylate composites. Carbon 50:5117–5125CrossRefGoogle Scholar
  140. 140.
    Bansala T, Joshi M, Mukhopadhyay S, Doong R, Chaudhary M (2017) Electrically conducting graphene-based polyurethane nanocomposites for microwave shielding applications in the Ku band. J Mater Sci 52:1546–1560CrossRefGoogle Scholar
  141. 141.
    Verma M, Verma P, Dhawan SK, Choudhary V (2015) Tailored graphene based polyurethane composites for efficient electrostatic dissipation and electromagnetic interference shielding applications. RSC Adv 5:97349–97358CrossRefGoogle Scholar
  142. 142.
    Hsiao ST, Ma CCM, Tien HW et al (2013) Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite. Carbon 60:57–66CrossRefGoogle Scholar
  143. 143.
    Yan DX, Ren PG, Pang H, Fu Q, Yang MB, Li ZM (2012) Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J Mater Chem 22:18772–18774CrossRefGoogle Scholar
  144. 144.
    Shahzad F, Yu S, Kumar P et al (2015) Sulfur doped graphene/polystyrene nanocomposites for electromagnetic interference shielding. Compos Struct 133:1267–1275CrossRefGoogle Scholar
  145. 145.
    Eswaraiah V, Sankaranarayanan V, Ramaprabhu S (2011) Functionalized graphene-PVDF foam composites for EMI shielding. Macromol Mater Eng 296:894–898CrossRefGoogle Scholar
  146. 146.
    Yang L, Phua SL, Toh CL et al (2013) Polydopamine-coated graphene as multifunctional nanofillers in polyurethane. RSC Adv 3:6377–6385CrossRefGoogle Scholar
  147. 147.
    Hsiao ST, Ma CCM, Tien HW et al (2015) Effect of covalent modification of graphene nanosheets on the electrical property and electromagnetic interference shielding performance of a water-borne polyurethane composite. ACS Appl Mater Interfaces 7:2817–2826CrossRefGoogle Scholar
  148. 148.
    Nasr Esfahani A, Katbab A, Taeb A, Simon L, Pope MA (2017) Correlation between mechanical dissipation and improved X-band electromagnetic shielding capabilities of amine functionalized graphene/thermoplastic polyurethane composites. Eur Polym J 95:520–538CrossRefGoogle Scholar
  149. 149.
    Manna K, Srivastava SK, Mittal V (2016) Role of enhanced hydrogen bonding of selectively reduced graphite oxide in fabrication of poly(vinyl alcohol) nanocomposites in water as EMI shielding material. J Phys Chem C 120:17011–17023CrossRefGoogle Scholar
  150. 150.
    Zhang HB, Yan Q, Zheng WG, He Z, Yu ZZ (2011) Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 3:918–924CrossRefGoogle Scholar
  151. 151.
    Narasimman R, Vijayan S, Prabhakaran K (2015) Graphene-reinforced carbon composite foams with improved strength and EMI shielding from sucrose and graphene oxide. J Mater Sci 50:8018–8028CrossRefGoogle Scholar
  152. 152.
    Li Y, Shen B, Yi D et al (2017) The influence of gradient and sandwich configurations on the electromagnetic interference shielding performance of multilayered thermoplastic polyurethane/graphene composite foams. Compos Sci Technol 138:209–216CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations