Skip to main content
Log in

Comparative study of dielectric properties of the PVDF composites filled with spherical and rod-like BaTiO3 derived by molten salt synthesis method

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the molten salt environment, the BaTiO3 spherical nanoparticles (BTNPs) and BaTiO3 nanorods (BTNRs) have been synthesized, respectively, in which spherical TiO2 and rod-like BaTi2O5 are precursors. The dissolution–precipitation is the main dominated mechanism in the formation of BTNPs, while the dissolution–diffusion is the main mechanism responsible for the formation of BTNRs. The latter is also called as topochemical mechanism, which is associated with the assembly of [TiO6] octahedron units in the transformation from BaTi2O5 to BaTiO3. By using these two kinds of BT as fillers, polyvinylidene fluoride (PVDF)-based composites, BTNPs/PVDF and BTNRs/PVDF, have been constructed and their dielectric properties have been investigated. It was found that there were three main factors related to filler morphology affecting the dielectric properties of the composites, i.e., intrinsic polarization of filler, the interface polarization and electric field distribution between the filler and the matrix. Though the spontaneous polarization of 600-nm-sized BTNPs is larger, the interfacial area of BTNRs/PVDF composite is larger than that of BTNPs (600 nm)/PVDF composite, which is advantageous to enhance the interface polarization. Moreover, the analysis through Potential-Across model revealed that BTNRs/PVDF composite has stronger electric field intensity distribution across BTNRs filler in comparison with BTNPs/PVDF, which plays the key role in improving the dielectric properties of composites. This work not only presents the BTNRs/PVDF composite with good dielectric performance, the related design and the theory analysis also facilitate the development of more new high dielectric composites based on morphology control of ferroelectric filler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Wu S, Lin M, Burlingame Q, Zhang QM (2014) Meta-aromatic polyurea with high dipole moment and dipole density for energy storage capacitors. Appl Phys Lett 104:072903-1–072903-4

    Google Scholar 

  2. Wang T, Jin L, Li C, Hu Q, Wei X, Lupascu D (2014) Relaxor ferroelectric BaTiO3–Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J Am Ceram Soc 98:559–566

    Article  Google Scholar 

  3. Li Q, Han K, Gadinski MR, Zhang G, Wang Q (2014) High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv Mater 26:6244–6249

    Article  Google Scholar 

  4. Yu K, Niu Y, Xiang F, Zhou Y, Bai Y, Wang H (2013) Enhanced electric breakdown strength and high energy density of barium titanate filled polymer nanocomposites. J Appl Phys 114:174107-1–174107-5

    Google Scholar 

  5. Tang HX, Sodano HA (2013) Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires. Nano Lett 13:1373–1379

    Article  Google Scholar 

  6. Li WJ, Meng QJ, Zheng YS, Zhang ZC, Xia WM, Xu Z (2010) Electric energy storage properties of poly(vinylidene fluoride). Appl Phys Lett 96:192905-1–192905-3

    Google Scholar 

  7. Rahimabady M, Chen ST, Yao K, Tay FEH, Lu L (2011) High electric breakdown strength and energy density in vinylidene fluoride oligomer/poly(vinylidene fluoride) blend thin films. Appl Phys Lett 99:142901-1–142901-3

    Article  Google Scholar 

  8. Chu B, Zhou X, Ren K et al (2006) A dielectric polymer with high electric energy density and fast discharge speed. Science 313:334–336

    Article  Google Scholar 

  9. Tang H, Zhou Z, Sodano HA (2014) Relationship between BaTiO3 nanowire aspect ratio and the dielectric permittivity of nanocomposites. ACS Appl Mater Interfaces 6:5450–5455

    Article  Google Scholar 

  10. Zhang ZF, Bai XF, Zha JW, Li WK, Dang ZM (2014) Preparation and dielectric properties of BaTiO3/epoxy nanocomposites for embedded capacitor application. Compos Sci Technol 97:100–105

    Article  Google Scholar 

  11. Fan BH, Zha JW, Wang DR, Zhao J, Dang ZM (2012) Experimental study and theoretical prediction of dielectric permittivity in BaTiO3/polyimide nanocomposite films. Appl Phys Lett 100:092903-1–092903-4

    Google Scholar 

  12. Xie L, Huang X, Huang Y, Yang K, Jiang P (2013) Core-shell structured hyperbranched aromatic polyamide/BaTiO3 hybrid filler for poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) nanocomposites with the dielectric constant comparable to that of percolative composites. ACS Appl Mater Interfaces 5:1747–1756

    Article  Google Scholar 

  13. Zhou T, Zha JW, Cui RY, Fan BH, Yuan JK, Dang ZM (2011) Improving dielectric properties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanoparticles. ACS Appl Mater Interfaces 3:2184–2188

    Article  Google Scholar 

  14. Yu K, Niu YJ, Zhou YC, Bai YY, Wang H (2013) Nanocomposites of surface-modified BaTiO3 nanoparticles filled ferroelectric polymer with enhanced energy density. J Am Ceram Soc 96:2519–2524

    Article  Google Scholar 

  15. Feng Y, Li WL, Hou YF et al (2014) Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape. J Mater Chem C 3:1250–1260

    Article  Google Scholar 

  16. Andrews C, Lin Y, Sodano HA (2010) The effect of particle aspect ratio on the electroelastic properties of piezoelectric nanocomposites. Smart Mater Struct 19:025018-1–025018-14

    Article  Google Scholar 

  17. Nayak S, Sahoo B, Chaki TK, Khastgir D (2014) Facile preparation of uniform barium titanate (BaTiO3) multipods with high permittivity: impedance and temperature dependent dielectric behavior. RSC Adv 4:1212–1224

    Article  Google Scholar 

  18. Buscaglia MT, Harnagea C, Dapiaggi M, Buscaglia V, Pignolet A, Nanni P (2009) Ferroelectric BaTiO3 nanowires by a topochemical solid-state reaction. Chem Mater 21:5058–5065

    Article  Google Scholar 

  19. Huang KC, Huang TC, Hsieh WF (2009) Morphology-controlled synthesis of barium titanate nanostructures. Inorg Chem 48:9180–9184

    Article  Google Scholar 

  20. Lv D, Zuo R, Su S, Trolier-McKins S (2012) Processing and morphology of (111) BaTiO3 crystal platelets by a two-step molten salt method. J Am Ceram Soc 95:1838–1842

    Article  Google Scholar 

  21. Pan Z, Yao L, Zhai J et al (2016) Excellent energy density of polymer nanocomposites containing BaTiO3@Al2O3 nanofibers induced by moderate interfacial area. J Mater Chem A 4:13259–13264

    Article  Google Scholar 

  22. Fu J, Hou Y, Zheng M, Zhu M (2017) Topochemical build-up of BaTiO3 nanorods using BaTi2O5 as the template. CrystEngComm 19:1115–1122

    Article  Google Scholar 

  23. Ge H, Hou Y, Zhu M, Wang H, Yan H (2008) Facile synthesis and high d 33 of single-crystalline KNbO3 nanocubes. Chem Commun (Camb) 41:5137–5139

    Article  Google Scholar 

  24. Mao Y, Park TJ, Zhang F, Zhou H, Wong SS (2007) Environmentally friendly methodologies of nanostructure synthesis. Small 3:1122–1139

    Article  Google Scholar 

  25. Fu J, Hou Y, Zheng M, Wei Q, Zhu M, Yan H (2015) Improving dielectric properties of PVDF composites by employing surface modified strong polarized BaTiO3 particles derived by molten salt method. ACS Appl Mater Interfaces 7:24480–24491

    Article  Google Scholar 

  26. Dang ZM, Xu HP, Wang HY (2007) Significantly enhanced low-frequency dielectric permittivity in the BaTiO3/poly(vinylidene fluoride) nanocomposite. Appl Phys Lett 90:012901-1–012901-3

    Google Scholar 

  27. Deng H, Qiu Y, Yang S (2009) General surfactant-free synthesis of MTiO3 (M = Ba, Sr, Pb) perovskite nanostrips. J Mater Chem 19:976–982

    Article  Google Scholar 

  28. Song Y, Shen Y, Liu H, Lin Y, Li M, Nan C-W (2012) Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix. J Mater Chem 22:16491–16498

    Article  Google Scholar 

  29. Wang Y, Cui J, Yuan Q, Niu Y, Bai Y, Wang H (2015) Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites. Adv Mater 27:6658–6663

    Article  Google Scholar 

  30. Yang D, Tian M, Li D, Wang W, Ge F, Zhang L (2013) Enhanced dielectric properties and actuated strain of elastomer composites with dopamine-induced surface functionalization. J Mater Chem A 1:12276–12284

    Article  Google Scholar 

  31. Yang W, Yu S, Sun R, Du R (2011) Nano- and microsize effect of CCTO fillers on the dielectric behavior of CCTO/PVDF composites. Acta Mater 59:5593–5602

    Article  Google Scholar 

  32. Fan B-H, Zha J-W, Wang D, Zhao J, Dang Z-M (2012) Size-dependent low-frequency dielectric properties in the BaTiO3/poly(vinylidene fluoride) nanocomposite films. Appl Phys Lett 100:012903-1–012903-4

    Google Scholar 

  33. Ge H, Huang Y, Hou Y, Xiao H, Zhu M (2014) Size dependence of the polarization and dielectric properties of KNbO3 nanoparticles. RSC Adv 4:23344–23350

    Article  Google Scholar 

  34. Hewat AW (1973) Cubic-tetragonal-orthorhombic-rhombohedral ferroelectric transitions in perovskite potassium niobate: neutron powder profile refinement of the structures. J Phys Chem C 6:59–72

    Google Scholar 

  35. Tang H, Lin Y, Sodano HA (2013) Synthesis of high aspect ratio BaTiO3 nanowires for high energy density nanocomposite capacitors. Adv Energy Mater 3:451–456

    Article  Google Scholar 

  36. Tang H, Lin Y, Andrews C, Sodano HA (2011) Nanocomposites with increased energy density through high aspect ratio PZT nanowires. Nanotechnology 22:015702-1–015702-8

    Google Scholar 

  37. Dang ZM, Yuan JK, Yao SH, Liao RJ (2013) Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mater 25:6334–6365

    Article  Google Scholar 

  38. Tang H, Lin Y, Sodano HA (2012) Enhanced energy storage in nanocomposite capacitors through aligned PZT nanowires by uniaxial strain assembly. Adv Energy Mater 2:469–476

    Article  Google Scholar 

  39. Yan J, Jeong YG (2016) High performance flexible piezoelectric nanogenerators based on BaTiO3 nanofibers in different alignment modes. ACS Appl Mater Interfaces 8:15700–15709

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51602012, 51677001), the Natural Science Foundation of Beijing (Grant No. 4164078), Ri-Xin Talents Project of Beijing University of Technology (Grant No. 2017-RX(1)-15), Jing-Hua Talents Project of Beijing University of Technology (Grant No. 2015-JH-L04) and Beijing Municipal High Level Innovative Team Building Program (No. IDHT20170502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yudong Hou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1853 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Hou, Y., Zheng, M. et al. Comparative study of dielectric properties of the PVDF composites filled with spherical and rod-like BaTiO3 derived by molten salt synthesis method. J Mater Sci 53, 7233–7248 (2018). https://doi.org/10.1007/s10853-018-2114-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2114-x

Keywords

Navigation