Journal of Materials Science

, Volume 53, Issue 10, pp 7224–7232 | Cite as

Evidence of low-symmetry phases in pressure-dependent Raman spectroscopic study of BaTiO3

  • Shekhar Tyagi
  • V. G. Sathe
  • Gaurav Sharma
  • Velaga Srihari
  • Himanshu Kumar Poswal


In the earlier pressure-dependent Raman spectroscopic studies, it has been reported that BaTiO3 undergoes a tetragonal to cubic phase transition above ~ 2 GPa, whereas pressure-dependent X-ray absorption, X-ray diffuse scattering studies and pair distribution function studies have reported the presence of a low-symmetry rhombohedral phase above ~ 2.3 GPa. In this report, we present our pressure-dependent Raman spectroscopic studies on polycrystalline BaTiO3 which shows that it first undergoes a transition from tetragonal to orthorhombic/rhombohedral phase above ~ 2.6 GPa and then finally goes to the cubic phase above 8.4 GPa. Pressure-dependent synchrotron X-ray diffraction (SXRD) studies have also been carried out that provided rate of change of volume as a function of pressure resulting in bulk modulus of 215 ± 9 GPa.



Authors thank Dr. D.M. Phase and Mr. Gyanendra Panchal for FESEM measurements.

Compliance with ethical standards

Conflict of interest

Authors declare that no conflicts of interest exist.


  1. 1.
    Wu L, Shen B, Hu Q, Chen J, Wang Y, Xia Y, Yin J, Liu Z (2017) Giant electromechanical strain response in lead-free SrTiO3-doped (Bi0.5Na0.5TiO3–BaTiO3)—LiNbO3 piezoelectric ceramics. J Am Cerem Soc 100:4670–4679CrossRefGoogle Scholar
  2. 2.
    Obilor U, Pascual-Gonzalez C, Murakami S, Reaney IM, Feteira A (2018) Study of the temperature dependence of the giant electric field-induced strain in Nb-doped BNT-BT-BKT piezoceramics. Mater Res Bull 97:385–392CrossRefGoogle Scholar
  3. 3.
    Li T, Lou X, Ke X, Cheng S, Mi S, Wang X, Shi J, Liu X, Dong G, Fan H, Wang Y, Tan X (2017) Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5)TiO3-based lead-free piezoceramics. Acta Mater 128:337–344CrossRefGoogle Scholar
  4. 4.
    Tenne DA, Xi XX, Li YL, Chen LQ, Soukiassian A, Zhu MH, James AR, Lettieri J, Schlom DG, Tian W, Pan XQ (2004) Absence of low-temperature phase transitions in epitaxial BaTiO3thin films. Phys Rev B 69:174101CrossRefGoogle Scholar
  5. 5.
    Kumar S, Kumar D, Sathe VG, Kumar R, Sharma TK (2013) Absence of low temperature phase transitions and enhancement of ferroelectric transition temperature in highly strained BaTiO3 epitaxial films grown on MgO substrates. J Appl Phys 117:134103CrossRefGoogle Scholar
  6. 6.
    Sood AK, Chandrabhas N, Muthu DVS, Jayaraman A (1995) Phonon interference in BaTiO3: high-pressure Raman study. Phys Rev B 51:8892–8896CrossRefGoogle Scholar
  7. 7.
    Venkateswaran UD, Naik VM, Naik R (1998) High-pressure Raman studies of polycrystalline BaTiO3. Phys Rev B 58:14256–14260CrossRefGoogle Scholar
  8. 8.
    Angel RJ, Zhao J, Ross NL (2005) General rules for predicting phase transitions in perovskites due to octahedral tilting. Phys Rev Lett 95:025503CrossRefGoogle Scholar
  9. 9.
    Ravel B, Stern EA, Vedrinskii RI, Kraizman V (1998) Local structure and the phase transitions of BaTiO3. Ferroelectrics 206–207:407–430CrossRefGoogle Scholar
  10. 10.
    Itie JP, Couzinet B, Polian A, Flank AM, Lagarde P (2006) Pressure-induced disappearance of the local rhombohedral distortion in BaTiO3. Europhys Lett 74(4):706–711CrossRefGoogle Scholar
  11. 11.
    Ravy S, Itié J, Polian A, Hanfland M (2007) High-pressure study of x-ray diffuse scattering in ferroelectric perovskites. Phys Rev Lett 99:117601CrossRefGoogle Scholar
  12. 12.
    Ehm L, Borkowski LA, Parise JB, Ghose S, Chen Z (2011) Evidence of tetragonal nanodomains in the high-pressure polymorph of BaTiO3. Appl Phys Lett 98:021901CrossRefGoogle Scholar
  13. 13.
    Seo YS, Ahn JS (2013) Ab-initio studies on the phonons of BaTiO3 polytypes: pressure dependence with a hybrid functional. Phys Rev B 88:014114CrossRefGoogle Scholar
  14. 14.
    Welsch A-M (2009) High-pressure Raman scattering of pure and doped PbSc0.5Ta0.5O3 and PbSc0.5Nb0.5O3 single crystals. Ph.D. thesis, University of HamburgGoogle Scholar
  15. 15.
    Jayaraman A (1983) Diamond anvil cell and high-pressure physical investigations. Rev Mod Phys 55:65–108CrossRefGoogle Scholar
  16. 16.
    Pandey KK, Poswal HK, Mishra AK, Dwivedi A, Vasanthi R, Garg N, Sharma SM (2013) Energy dispersive x-ray diffraction beamline at Indus-2 synchrotron source. Pramana J Phys 80:607–619CrossRefGoogle Scholar
  17. 17.
    Rubio-Marcos F, Del Campo A, Marchet P, Fernandez JF (2015) Ferroelectric domain wall motion induced by polarized light. Nat Commun 6:6594CrossRefGoogle Scholar
  18. 18.
    Rodriguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B 192:55–69CrossRefGoogle Scholar
  19. 19.
    Birch F (1978) Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300°K. J Geophys Res 83:1257–1268CrossRefGoogle Scholar
  20. 20.
    Piskunov S, Heifets E, Eglitis RI, Borstel G (2004) Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: an ab initio HF/DFT study. Comput Mater Sci 29:165–178CrossRefGoogle Scholar
  21. 21.
    Perry CH, Hall DB (1965) Temperature dependence of the Raman spectrum of BaTiO3. Phys Rev Lett 15:700–702CrossRefGoogle Scholar
  22. 22.
    Begg BD, Finnie KS, Vance ER (1996) Raman study of the relationship between room-temperature tetragonality and the curie point of barium titanate. J Am Cerem Soc 79(10):2666–2672CrossRefGoogle Scholar
  23. 23.
    Sluka T, Tagantsev AK, Bednyakov P, Setter N (2013) Free-electron gas at charged domain walls in insulating BaTiO3. Nat Commun 4:1808CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.UGC-DAE Consortium for Scientific ResearchIndoreIndia
  2. 2.High Pressure and Synchrotron Radiation Physics DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations