Journal of Materials Science

, Volume 53, Issue 12, pp 8677–8698 | Cite as

A review of the preparation and application of magnetic nanoparticles for surface-enhanced Raman scattering

Review

Abstract

In recent years, the unique properties of magnetic functional nanomaterials have received considerable attentions and show promising applications in separation, detection, diagnosis, catalysis, environment remediation and so on. Specifically, introducing magnetic nanomaterials (MNPs) into traditional sensing techniques greatly simplifies detection operation and improves sensing performances, which makes magnetic nanomaterial-based sensing techniques become a hot research topic. Compared with other sensing techniques such as chromatography, fluorescence, mass spectrum and electrochemistry, surface-enhanced Raman scattering (SERS) displays unique properties of high-sensitivity, fingerprint specificity and nondestructive detection. The introduction of MNPs in SERS has proven to be an efficient way to resolve several critical challenges in practical SERS analysis leading to highly efficient target separation and enrichment, high-sensitive detection and precise outcomes analysis. This makes the MNPs involved SERS analysis a powerful technique with very appealing and promising application in various branches of analytical science. In this review, we first briefly introduced the preparation, encapsulation and surface modification of magnetic nanoparticles, assembly of magnetic nanoparticle–plasmonic substrates and then discussed their applications in SERS analysis, including biomedical application, environmental analysis, food safety and chemical reaction monitoring. Finally, we presented some outlooks on further developments of magnetic nanoparticles in SERS applications.

Notes

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (21665011 and 21705063) and Natural Science Foundation of Jiangxi Province (20161BAB203088).

References

  1. 1.
    Talelli M, Aires A, Marciello M (2016) Protein-modified magnetic nanoparticles for biomedical applications. Curr Org Chem 19:1–1Google Scholar
  2. 2.
    Ma JQ, Guo SB, Guo XH, Ge HG (2015) A mild synthetic route to Fe3O4@TiO2-Au composites: preparation, characterization and photocatalytic activity. Appl Surf Sci 353:1117–1125CrossRefGoogle Scholar
  3. 3.
    Baghayeri M (2015) Glucose sensing by a glassy carbon electrode modified with glucose oxidase and a poly(p-phenylenediamine)-based nanocomposite. RSC Adv 5:18267–18274CrossRefGoogle Scholar
  4. 4.
    Wang YX, Wang SH, Niu HY, Ma YR, Zeng T, Cai YQ, Meng ZF (2013) Preparation of polydopamine coated Fe3O4 nanoparticles and their application for enrichment of polycyclic aromatic hydrocarbons from environmental water samples. J Chromatogr A 1283:20–26CrossRefGoogle Scholar
  5. 5.
    Baikousi M, Bourlinos AB, Douvalis A et al (2012) Synthesis and characterization of γ-Fe2O3/carbon hybrids and their application in removal of hexavalent Chromium ions from aqueous solutions. Langmuir 28:3918–3930CrossRefGoogle Scholar
  6. 6.
    Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715CrossRefGoogle Scholar
  7. 7.
    Majetich SA, Jin Y (1999) Magnetization directions of individual nanoparticles. Science 284:470–473CrossRefGoogle Scholar
  8. 8.
    Zou J, Zhang W, Poe D et al (2010) MRI manifestation of novel superparamagnetic iron oxide nanoparticles in the rat inner ear. Nanomedicine 5:739–754CrossRefGoogle Scholar
  9. 9.
    Ranzoni A, Sabatte G, Ijzendoorn LJV, Prins MWJ (2012) One-step homogeneous magnetic nanoparticle immunoassay for biomarker detection directly in blood plasma. ACS Nano 6:3134–3141CrossRefGoogle Scholar
  10. 10.
    Zhang LY, Wang TT, Yang L, Liu C, Wang CG, Liu HY, Wang YA, Su ZM (2012) General route to multifunctional uniform yolk/mesoporous silica shell nanocapsules: a platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery. Chem Eur J 18:12512–12521CrossRefGoogle Scholar
  11. 11.
    Cheng H-W, Luo J, Zhong C-J (2015) SERS nanoprobes for bio-application. Front Chem Sci Eng 9:428–441CrossRefGoogle Scholar
  12. 12.
    Šefčovičová J, Tkac J (2015) Application of nanomaterials in microbial-cell biosensor constructions. Chem Pap 69:42–53Google Scholar
  13. 13.
    Damborska D, Bertok T, Dosekova E, Holazova A, Lorencova L, Kasak P, Tkac J (2017) Nanomaterial-based biosensors for detection of prostate specific antigen. Microchim Acta 6:1–19Google Scholar
  14. 14.
    Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:144–157CrossRefGoogle Scholar
  15. 15.
    Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244CrossRefGoogle Scholar
  16. 16.
    Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun 34:927–934CrossRefGoogle Scholar
  17. 17.
    Ramimoghadam D, Bagheri S, Hamid SBA (2014) Progress in electrochemical synthesis of magnetic iron oxide nanoparticles. J Magn Magn Mater 368:207–229CrossRefGoogle Scholar
  18. 18.
    Wang LP, Tang SK (2011) Progress of application of supercritical fluid technology in preparation of magnetic iron oxide nanoparticles. Chem Ind Eng P 30:339–344Google Scholar
  19. 19.
    Wang H, Jiang X, Lee ST, He Y (2014) Silicon nanohybrid-based surface-enhanced Raman scattering sensors. Small 10:4455–4468CrossRefGoogle Scholar
  20. 20.
    Tang SY, Li Y, Huang H et al (2017) Efficient enrichment and self-assembly of hybrid nanoparticles into removable and magnetic SERS substrates for sensitive detection of environmental pollutants. ACS Appl Mater Interface 9:7472–7480CrossRefGoogle Scholar
  21. 21.
    Guo MD, Dong J, Xie W, Tao L, Lu WB, Wang Y, Qian WP (2015) SERS tags-based novel monodispersed hollow gold nanospheres for highly sensitive immunoassay of CEA. J Mater Sci 50:3329–3336.  https://doi.org/10.1007/s10853-015-8825-3 CrossRefGoogle Scholar
  22. 22.
    Rubira RJG, Camacho SA, Aoki PHB, Paulovich FV, Oliveira ON, Constantino CJL (2016) Probing trace levels of prometryn solutions: from test samples in the lab toward real samples with tap water. J Mater Sci 51:3182–3190.  https://doi.org/10.1007/s10853-015-9628-2 CrossRefGoogle Scholar
  23. 23.
    Bao ZJY, Liu X, Chen Y, Wu YC, Chan HLW, Dai JY, Lei DY (2014) Quantitative SERS detection of low-concentration aromatic polychlorinated biphenyl-77 and 2,4,6-trinitrotoluene. J Hazard Mater 280:706–712CrossRefGoogle Scholar
  24. 24.
    Aoki PHB, Furini LN, Alessio P, Aliaga AE, Constantino CJL (2013) Surface-enhanced Raman scattering (SERS) applied to cancer diagnosis and detection of pesticides, explosives, and drugs. Rev Anal Chem 32:55–76CrossRefGoogle Scholar
  25. 25.
    Benjaber S, Peveler WJ, Quesadacabrera R et al (2016) Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules. Nat Commun 7:12189–12195CrossRefGoogle Scholar
  26. 26.
    Han Y, Lei SL, Lu JH, He Y, Chen ZW, Ren L, Zhou X (2016) Potential use of SERS-assisted theranostic strategy based on Fe3O4/Au cluster/shell nanocomposites for bio-detection, MRI, and magnetic hyperthermia. Mater Sci Eng C Mater Biol Appl 64:199–207CrossRefGoogle Scholar
  27. 27.
    Ngo HT, Gandra N, Fales AM, Taylor SM, Vo-Dinh T (2016) Sensitive DNA detection and SNP discrimination using ultrabright SERS nanorattles and magnetic beads for malaria diagnostics. Biosens Bioelectron 81:8–14CrossRefGoogle Scholar
  28. 28.
    Chen P, Zhao AW, Wang J, He QY, Sun HH, Wang DP, Sun M, Guo HY (2018) In-situ monitoring reversible redox reaction and circulating detection of nitrite via an ultrasensitive magnetic Au@Ag SERS substrate. Sensor Actuat B-Chem 256:107–116CrossRefGoogle Scholar
  29. 29.
    Schlücker S (2014) Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Edit 53:2–42CrossRefGoogle Scholar
  30. 30.
    Hurst SJ, Fry HC, Gosztola DJ, Rajh T (2011) Utilizing chemical Raman enhancement: a route for metal oxide support-based biodetection. J Phys Chem C 115:620–630CrossRefGoogle Scholar
  31. 31.
    Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S (2017) Advances in magnetic nanoparticles for biomedical applications. Adv. Healthcare Mater. 1700845Google Scholar
  32. 32.
    Wu W, Wu ZH, Yu T, Jiang CZ, Kim WS (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16:023501CrossRefGoogle Scholar
  33. 33.
    Zhou Q, Li J, Wang M, Zhao D (2016) Iron-based magnetic nanomaterials and their environmental application. Crit Rev Sci Technol 46:783–826CrossRefGoogle Scholar
  34. 34.
    Tran VT, Kim J, Tufa LT, Oh S, Kwon J, Lee J (2018) Magnetoplasmonic nanomaterials for biosensing/imaging and in vitro/in vivo biousability. Anal Chem 90:225–239CrossRefGoogle Scholar
  35. 35.
    Cristea C, Tertis M, Galatus R (2017) Magnetic nanoparticles for antibiotics detection. Nanomaterials 7(119):7060119Google Scholar
  36. 36.
    Xia H, Ruijie Tong R, Song Y, Xiong F, Li J, Wang S, Fu H, Wen J, Li D, Zeng Y, Zhao Z, Wu JJ (2017) Synthesis and bio-applications of targeted magnetic-fluorescent composite nanoparticles. Nanopart Res 19(4):149CrossRefGoogle Scholar
  37. 37.
    Wang T, Zhou Y, Lei C, Luo J, Xie S, Pu H (2017) Magnetic impedance biosensor: a review. Biosens Bioelectron 90:418–435CrossRefGoogle Scholar
  38. 38.
    Liu Y, Zhou H, Hu Z, Yu G, Yang D, Zhao J (2017) Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: a review. Biosens Bioelectron 94:131–140CrossRefGoogle Scholar
  39. 39.
    Farka Z, Juřík T, Kovář D, Trnková L, Skládal P (2017) Nanoparticle-based immunochemical biosensors and assays: recent advances and challenge. Chem Rev 117(15):9973–10042CrossRefGoogle Scholar
  40. 40.
    Xiao D, Lu T, Zeng R, Bi Y (2016) Preparation and highlighted applications of magnetic microparticles and nanoparticles: a review on recent advances. Microchim Acta 183(10):2655–2675CrossRefGoogle Scholar
  41. 41.
    Sayed FN, Polshettiwar V (2015) Facile and sustainable synthesis of shaped iron oxide nanoparticles: effect of iron precursor salts on the shapes of iron oxides. Sci Rep 5:9733–9747CrossRefGoogle Scholar
  42. 42.
    Mou XL, Wei XJ, Li Y, Shen WJ (2012) Tuning crystal-phase and shape of Fe2O3 nanoparticles for catalytic applications. CrystEngComm 14:5107–5120CrossRefGoogle Scholar
  43. 43.
    Kolen’ko YV, Bañobre-López M, Rodríguez-Abreu C et al (2014) Large-scale synthesis of colloidal Fe3O4 nanoparticles exhibiting high heating efficiency in magnetic hyperthermia. J Phys Chem C 118:8691–8701CrossRefGoogle Scholar
  44. 44.
    Lee J, Kwon SG, Park JG, Hyeon T (2015) Size dependence of metal-insulator transition in stoichiometric Fe3O4 nanocrystals. Nano Lett 15:4337–4342CrossRefGoogle Scholar
  45. 45.
    Hufschmid R, Arami H, Ferguson RM, Gonzales M, Teeman E, Brush LN, Browning ND, Krishnana KM (2015) Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale 7:11142–11154CrossRefGoogle Scholar
  46. 46.
    Park J, An K, Hwang Y et al (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895CrossRefGoogle Scholar
  47. 47.
    Marini S (2015) Magnetic nanocomposites for heavy metals removal from stormwater. PhD dessetation, Università degli Studi di padovaGoogle Scholar
  48. 48.
    Gutiérrez L, Costo R, Grüttner C et al (2015) Synthesis methods to prepare single- and multi-core iron oxide nanoparticles for biomedical applications. Dalton T 44:2943–2952CrossRefGoogle Scholar
  49. 49.
    Wang LY, Sun Y, Wang J, Wang J, Yu AM, Zhang HQ, Song DQ (2011) Preparation of surface plasmon resonance biosensor based on magnetic core/shell Fe3O4/SiO2 and Fe3O4/Ag/SiO2 nanoparticles. Colloid Surf B 84:484–490CrossRefGoogle Scholar
  50. 50.
    Stolnik S, Dunn SE, Garnett MC et al (1994) Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)- poly(ethylene glycol) copolymers. Pharm Res 11:1800–1808CrossRefGoogle Scholar
  51. 51.
    Cornell RM, Schertmann U (1997) The iron oxides: structure, properties, reactions, occurrence and uses. Corros Sci 39:1499–1500CrossRefGoogle Scholar
  52. 52.
    Bazile D, Prud’homme C, Bassoullet MT, Marlard M, Spenlehauer G, Veillard M (1995) Stealth me. PEG-PLA nanoparticles avoid uptake by the mononuclear phagocyte system. J Pharm Sci 84:493–498CrossRefGoogle Scholar
  53. 53.
    Peracchia MT, Gref R, Minamitake Y, Domb A, Lotan N, Langer R (1997) PEG coated nanoparticles from amphiphilic diblock and multiblock copolymer: investigation of their encapsulation and release characteristics. J Control Release 46:223–231CrossRefGoogle Scholar
  54. 54.
    Jeong B, Bae YH, Kim SW (2000) Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymer. J Control Release 63:155–163CrossRefGoogle Scholar
  55. 55.
    Lamprecht A, Ubrich N, Perez MH, Lehr CM, Hoffman M, Maincent P (1999) Biodegradable monodispersed nanoparticles prepared by pressure homogenization-emulsification. Int J Pharm 184:97–105CrossRefGoogle Scholar
  56. 56.
    Sah H (1999) Protein behavior at the water/methylene chloride interface. J Pharm Sci 88:1320–1325CrossRefGoogle Scholar
  57. 57.
    Zengin A, Tamer U, Caykara T (2014) Extremely sensitive sandwich assay of kanamycin using surface-enhanced Raman scattering of 2-mercaptobenzothiazole labeled gold@silver nanoparticles. Anal Chim Acta 817:33–41CrossRefGoogle Scholar
  58. 58.
    Shan YF, Yang Y, Cao YQ, Huang ZR (2015) Facile solvothermal synthesis of Ag/Fe3O4 nanocomposites and their SERS applications in online monitoring of pesticide contaminated water. RSC Adv 5:102610–102618CrossRefGoogle Scholar
  59. 59.
    Li JM, Ma WF, You LJ, Guo J, Hu J, Wang CC (2013) Highly sensitive detection of target ssDNA based on SERS liquid chip using suspended magnetic nanospheres as capturing substrates. Langmuir 29:6147–6155CrossRefGoogle Scholar
  60. 60.
    Liu TM, Yu JS, Chang CA et al (2014) One-step shell polymerization of inorganic nanoparticles and their applications in SERS/nonlinear optical imaging, drug delivery, and catalysis. Sci Rep 4:5593–5603CrossRefGoogle Scholar
  61. 61.
    Qiu YC, Deng D, Deng QW, Wu P, Zhang H, Cai CX (2015) Synthesis of magnetic Fe3O4-Au hybrids for sensitive SERS detection of cancer cells at low abundance. J Mater Chem B 3:4487–4495CrossRefGoogle Scholar
  62. 62.
    Contreras-Cáceres R, Abalde-Cela S, Guardia-Girós P, Fernández-Barbero A, Pérez-Juste J, Alvarez-Puebla RA, Liz-Marzán LM (2011) Multifunctional microgel magnetic/optical traps for SERS ultradetection. Langmuir 27:4520–4525CrossRefGoogle Scholar
  63. 63.
    Wang C, Wang Y, Jin Y, Xu T, Yuan L, Fang J (2015) Multifunctional nanocomposite with magnetism, thermosensitivity and surface enhanced Raman scattering effect. J Nanosci Nanotechnol 15:6784–6789CrossRefGoogle Scholar
  64. 64.
    Lou L, Yu K, Zhang ZL, Huang R, Zhu JZ, Wang YT, Zhu ZQ (2012) Dual-mode protein detection based on Fe3O4-Au hybrid nanoparticles. Nano Res 5:272–282CrossRefGoogle Scholar
  65. 65.
    Cai WY, Wang X, Yan YX (2014) Controllable fabrication and sensitive detection based on SERS substrates with Au nanocubes coated Fe3O4. Mater Res Bull 52:1–5CrossRefGoogle Scholar
  66. 66.
    Wang CW, Xu JW, Wang JF, Rong Z, Li P, Xiao R, Wang SQ (2015) Polyethylenimine-interlayered silver-shell magnetic-core microspheres as multifunctional SERS substrates. J Mater Chem C 3:8684–8693CrossRefGoogle Scholar
  67. 67.
    Yan MQ, Shen Y, Zhang GY, Bi H (2016) Multifunctional nanotube-like Fe3O4/PANI/CDs/Ag hybrids: an efficient SERS substrate and nanocatalyst. Mater Sci Eng, C 58:568–575CrossRefGoogle Scholar
  68. 68.
    Ren GH, Shang MY, Zou HZ, Wang WQ (2016) Fe3O4@SiO2-SO3H@PPy@Au spheres: fabrication, characterization and application in SERS. Mater Chem Phys 173:333–339CrossRefGoogle Scholar
  69. 69.
    Zhai YM, Zhai JF, Wang YL, Guo SJ, Ren W, Dong SJ (2009) Fabrication of iron oxide core/gold shell submicrometer spheres with nanoscale surface roughness for efficient surface-enhanced Raman scattering. J Phys Chem C 113:7009–7014CrossRefGoogle Scholar
  70. 70.
    Li CY, Ma C, Wang F, Xi ZJ, Wang ZF, Deng Y, He NY (2012) Preparation and biomedical applications of core-shell silica/magnetic nanoparticle composites. J Nanosci Nanotechnol 12:2964–2972CrossRefGoogle Scholar
  71. 71.
    He R, Cheng YC, Jin T, Jiang M, Chen C, Xu GJ (2014) Plasmonic core/satellite heterostructure with hierarchical nanogaps for Raman spectroscopy enhanced by shell-isolated nanoparticles. Adv Optical Mater 2:788–793CrossRefGoogle Scholar
  72. 72.
    Gan Z, Zhao A, Zhang M, Tao W, Guo H, Gao Q, Mao R, Liu E (2013) Controlled synthesis of Au-loaded Fe3O4@C composite microspheres with superior SERS detection and catalytic degradation abilities for organic dyes. Dalton T 42:8597–8605CrossRefGoogle Scholar
  73. 73.
    Ye Y, Chen J, Ding Q, Lin D, Dong R, Yang L, Liu J (2013) Sea-urchin-like Fe3O4@C@Ag particles: an efficient SERS substrate for detection of organic pollutants. Nanoscale 5:5887–5895CrossRefGoogle Scholar
  74. 74.
    Prucek R, Tuček J, Kilianová M et al (2011) The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials 32:4704–4713CrossRefGoogle Scholar
  75. 75.
    Salihov SV, Ivanenkov YA, Krechetov SP et al (2015) Recent advances in the synthesis of Fe3O4@Au core/shell nanoparticles. J Magn Magn Mater 394:173–178CrossRefGoogle Scholar
  76. 76.
    Alula MT, Yang J (2014) Photochemical decoration of magnetic composites with silver nanostructures for determination of creatinine in urine by surface-enhanced Raman spectroscopy. Talanta 130:55–62CrossRefGoogle Scholar
  77. 77.
    Shen JH, Zhou Y, Huang JF et al (2017) In-situ SERS monitoring of reaction catalyzed by multifunctional Fe3O4@TiO2@Ag–Au microspheres. Appl Catal B-Environ 205:11–18CrossRefGoogle Scholar
  78. 78.
    Hui C, Shen CM, Tian JF et al (2011) Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds. Nanoscale 3:701–705CrossRefGoogle Scholar
  79. 79.
    Wang CW, Xu SP, Zhang KH, Li M, Li QJ, Xiao R, Wang SQ (2017) Streptomycin-modified Fe3O4–Au@Ag core-satellite magnetic nanoparticles as an effective antibacterial agent. J Mater Sci 52:1357–1368.  https://doi.org/10.1007/s10853-016-0430-6 CrossRefGoogle Scholar
  80. 80.
    Guo B, Yim H, Khasanov A, Stevens J (2010) Formation of magnetic FexOy/silica core-shell particles in a one-step flame aerosol process. Aerosol Sci Tech 44:281–291CrossRefGoogle Scholar
  81. 81.
    Morel AL, Nikitenko SI, Gionnet K et al (2008) Sonochemical approach to the synthesis of Fe3O4@SiO2 core-shell nanoparticles with tunable properties. ACS Nano 2:847–856CrossRefGoogle Scholar
  82. 82.
    Du JJ, Xu JW, Sun ZL, Jing CY (2016) Au nanoparticles grafted on Fe3O4 as effective SERS substrates for label-free detection of the 16 EPA priority polycyclic aromatic hydrocarbons. Anal Chim Acta 915:81–89CrossRefGoogle Scholar
  83. 83.
    Choi J-Y, Kim K, Shin KS (2010) Surface-enhanced Raman scattering inducible by recyclable Ag-coated magnetic particles. Vib Spectrosc 53:117–120CrossRefGoogle Scholar
  84. 84.
    Du QJ, Tan LF, Li B, Liu TL, Ren J, Huang ZB, Tang FQ, Meng XW (2014) One-pot gradient solvothermal synthesis of the Ag/Au–Fe3O4 composite nanoparticles and their applications. RSC Adv 4:56057–56062CrossRefGoogle Scholar
  85. 85.
    Gao Q, Zhao AW, Gan ZB et al (2012) Facile fabrication and growth mechanism of 3D flower-like Fe3O4 nanostructures and their application as SERS substrates. CrystEngComm 14:4834–4842CrossRefGoogle Scholar
  86. 86.
    Yang LB, Bao ZY, Wu YC, Liu JH (2012) Clean and reproducible SERS substrates for high sensitive detection by solid phase synthesis and fabrication of Ag-coated Fe3O4 microspheres. J Raman Spectrosc 43:848–856CrossRefGoogle Scholar
  87. 87.
    Quaresma P, Osório I, Dória G et al (2013) Star-shaped magnetite@gold nanoparticles for protein magnetic separation and SERS detection. RSC Adv 4:3659–3667Google Scholar
  88. 88.
    Reguera J, Aberasturi DJ, Winckelmans N, Langer J, Balsd S, Liz-Marzán LM (2016) Synthesis of Janus plasmonic-magnetic, star-sphere nanoparticles, and their application in SERS detection. Faraday Discuss 191:47–59CrossRefGoogle Scholar
  89. 89.
    Wang CW, Li P, Wang JF, Rong Z, Pang YF, Xu JW, Xiao R, Wang SQ (2015) Polyethylenimine-interlayered core-shell-satellite 3D magnetic microspheres as versatile SERS substrate. Nanoscale 7:18694–18707CrossRefGoogle Scholar
  90. 90.
    Tian Y, Chen LJ, Zhang J, Ma ZF, Song CN (2012) Bifunctional Au-nanorod@Fe3O4 nanocomposites: synthesis, characterization, and their use as bioprobes. J Nanopart Res 14:998–1009CrossRefGoogle Scholar
  91. 91.
    Yuen C, Liu Q (2012) Magnetic field enriched surface enhanced resonance Raman spectroscopy for early malaria diagnosis. J Biomed Opt 17:017005–017013CrossRefGoogle Scholar
  92. 92.
    Jun BH, Noh MS, Kim J et al (2010) Multifunctional silver-embedded magnetic nanoparticles as SERS nanoprobes and their applications. Small 6:119–125CrossRefGoogle Scholar
  93. 93.
    Chen Y, Chen H, Shi J (2013) In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater 25:3144–3176CrossRefGoogle Scholar
  94. 94.
    Fan CZ, Zhu SM, Xin HY, Tian YC, Liang EJ (2017) Tunable and enhanced SERS activity of magneto-plasmonic Ag-Fe3O4 nanocomposites with one pot synthesize method. J Opt 19:015401–015408CrossRefGoogle Scholar
  95. 95.
    Pang YF, Wang CW, Wang J, Sun ZW, Xiao R, Wang SQ (2016) Fe3O4@Ag magnetic nanoparticles for microRNA capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells. Biosens Bioelectron 79:574–580CrossRefGoogle Scholar
  96. 96.
    Wu L, Xiao XY, Chen K et al (2017) Ultrasensitive SERS detection of Bacillus thuringiensis special gene based on Au@Ag NRs and magnetic beads. Biosens Bioelectron 92:321–327CrossRefGoogle Scholar
  97. 97.
    Chen QS, Yang MX, Yang XJ, Li HH, Guo ZM, Rahma MH (2018) A large Raman scattering cross-section molecular embedded SERS aptasensor for ultrasensitive Aflatoxin B1 detection using CS-Fe3O4 for signal enrichment. Spectrochim Acta A 189:147–153CrossRefGoogle Scholar
  98. 98.
    Zhou X, Xu WL, Wang Y, Kuang Q, Shi YF, Zhong LB, Zhang QQ (2010) Fabrication of cluster/shell Fe3O4/Au nanoparticles and application in protein detection via a SERS method. J Phys Chem C114:19607–19613Google Scholar
  99. 99.
    Kong XM, Yu Q, Lv ZP, Du XZ (2013) Tandem assays of protein and glucose with functionalized core/shell particles based on magnetic separation and surface-enhanced Raman scattering. Small 9:3259–3264Google Scholar
  100. 100.
    Balzerova A, Fargasova A, Markova Z, Ranc V, Zboril R (2014) Magnetically-assisted surface enhanced Raman spectroscopy (MASERS) for label-free determination of human immunoglobulin G(IgG) in blood using Fe3O4@Ag nanocomposite. Anal Chem 86:11107–11114CrossRefGoogle Scholar
  101. 101.
    Yang K, Hu YJ, Dong N, Zhu GC, Zhu TF, Jiang NJ (2017) A novel SERS-based magnetic aptasensor for prostate specific antigen assay with high sensitivity. Biosens Bioelectron 94:286–291CrossRefGoogle Scholar
  102. 102.
    Chaloupková Z, Balzerová A, Bařinková J, Medříková Z, Šácha P, Beneš P, Ranc V, Konvalinka J, Zbořil R (2018) Label-free determination of prostate specific membrane antigen in human whole blood at nanomolar levels by magnetically assisted surface enhanced Raman spectroscopy. Anal Chim Acta 997:44–51CrossRefGoogle Scholar
  103. 103.
    Kearns H, Goodacre R, Jamieson LE, Graham D, Faulds K (2017) SERS detection of multiple antimicrobial-resistant pathogens using nanosensors. Anal Chem 89:12666–12673CrossRefGoogle Scholar
  104. 104.
    Zhang L, Xua JJ, Mi L, Gong H, Jiang SY, Yu QM (2012) Multifunctional magnetic–plasmonic nanoparticles for fast concentration and sensitive detection of bacteria using SERS. Biosens Bioelectron 31:130–136CrossRefGoogle Scholar
  105. 105.
    Zhang H, Ma X, Liu Y, Duan N, Wu SJ, Wang ZP, Xu BC (2015) Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Biosens Bioelectron 74:872–877CrossRefGoogle Scholar
  106. 106.
    Wang CW, Wang JF, Li M, Qu XY, Zhang KH, Rong Z, Xiao R, Wang SQ (2016) A rapid SERS method for label-free bacteria detection using polyethylenimine-modified Au-coated magnetic microspheres and Au@Ag nanoparticles. Analyst 141:6226–6238CrossRefGoogle Scholar
  107. 107.
    Rong Z, Wang CW, Wang JF, Wang DG, Xiao R, Wang SQ (2016) Magnetic immunoassay for cancer biomarker detection based on surface-enhanced resonance Raman scattering from coupled plasmonic nanostructures. Biosens Bioelectron 84:15–21CrossRefGoogle Scholar
  108. 108.
    Lin Y, Xu GH, Wei FD, Zhang AX, Yang J, Hu Q (2016) Detection of CEA in human serum using surface-enhanced Raman spectroscopy coupled with antibody-modified Au and γ-Fe2O3@Au nanoparticles. J Pharm Biomed 121:135–140CrossRefGoogle Scholar
  109. 109.
    Ge M, Wei C, Xu MM, Fang CW, Yuan YX, Gu RN, Yao JL (2015) Ultra-sensitive magnetic immunoassay of HE4 based on surface enhanced Raman spectroscopy. Anal Methods 7:6489–6495CrossRefGoogle Scholar
  110. 110.
    Yang TX, Guo XY, Wu YP, Wang H, Fu SY, Wen Y, Yang HF (2014) Facile and label-free detection of lung cancer biomarker in urine by magnetically assisted surface-enhanced Raman scattering. ACS Appl Mater Interface 6:20985–20993CrossRefGoogle Scholar
  111. 111.
    Ouyang L, Zhu LH, Jiang JZ, Tang HQ (2014) A surface-enhanced Raman scattering method for detection of trace glutathione on the basis of immobilized silver nanoparticles and crystal violet probe. Anal Chim Acta 816:41–49CrossRefGoogle Scholar
  112. 112.
    Wang YL, Ravindranath S, Irudayaraj J (2011) Separation and detection of multiple pathogens in a food matrix by magnetic SERS nanoprobes. Anal Bioanal Chem 399:1271–1278CrossRefGoogle Scholar
  113. 113.
    Guven B, Basaran-Akgul N, Temur E, Ur Tamer, Boyac IH (2011) SERS-based sandwich immunoassay using antibody coated magnetic nanoparticles for Escherichia coli enumeration. Analyst 136:740–748CrossRefGoogle Scholar
  114. 114.
    Najafi R, Mukherjee S, Hudson J Jr, Sharma A, Banerjee P (2014) Development of a rapid capture-cum-detection method for Escherichia coli O157 from apple juice comprising nano-immunomagnetic separation in tandem with surface enhanced Raman scattering. Int J Food Microbiol 18:89–97CrossRefGoogle Scholar
  115. 115.
    Ashley J, Wu KY, Hansen MF, Schmidt MS, Boisen A, Sun Y (2017) Quantitative detection of trace level cloxacillin in food samples using magnetic molecularly imprinted polymer extraction and surface-enhanced Raman spectroscopy nanopillars. Anal Chem 89:11484–11490CrossRefGoogle Scholar
  116. 116.
    Liu ZG, Wang Y, Deng R, Yang LY, Yu SH, Xu SP, Xu WQ (2016) Fe3O4@graphene oxide@Ag particles for surface magnet solid-phase extraction surface-enhanced Raman scattering (SMSPE-SERS): from sample pretreatment to detection all-in-one. ACS Appl Mater Interface 8:14160–14168CrossRefGoogle Scholar
  117. 117.
    Yang TX, Guo XY, Wang H, Fu SY, Yu J, Wen Y, Yang HF (2014) Au dotted magnetic network nanostructure and its application for on-site monitoring femtomolar level pesticide. Small 10:1325–1331CrossRefGoogle Scholar
  118. 118.
    Zhang XL, Niu CY, Wang YQ, Zhou SM, Liu J (2014) Gel-limited synthesis of dumbbell-like Fe3O4–Ag composite microspheres and their SERS applications. Nanoscale 6:12618–12625CrossRefGoogle Scholar
  119. 119.
    Zheng HH, Zou BF, Chen L, Wang YQ, Zhang XL, Zhou SM (2015) Gel-assisted synthesis of oleate-modified Fe3O4@Ag composite microspheres as magnetic SERS probe for thiram detection. CrystEngComm 17:6393–6398CrossRefGoogle Scholar
  120. 120.
    Guo HY, Zhao AW, Wang RJ et al (2015) Generalized green synthesis of Fe3O4/Ag composites with excellent SERS activity and their application in fungicide detection. J Nanopart Res 17:1–10CrossRefGoogle Scholar
  121. 121.
    Tang XH, Don RL, Yang LB, Liu JH (2015) Fabrication of Au nanorod-coated Fe3O4 microspheres as SERS substrate for pesticide analysis by near-infrared excitation. J Raman Spectrosc 46:470–475CrossRefGoogle Scholar
  122. 122.
    Tang XH, Cai WY, Yang LB, Liu JH (2013) Highly uniform and optical visualization of SERS substrate for pesticide analysis based on Au nanoparticles grafted on dendritic α-Fe2O3. Nanoscale 5:11193–11199CrossRefGoogle Scholar
  123. 123.
    Sun ZL, Du JJ, Yan L, Chen S, Yang ZL, Jing CY (2016) Multifunctional Fe3O4@SiO2-Au satellite structured SERS probe for charge selective detection of food dyes. ACS Appl Mater Interface 8:3056–3062CrossRefGoogle Scholar
  124. 124.
    Hu HB, Wang ZH, Pan L, Zhao SP, Zhu SY (2010) Ag-coated Fe3O4@SiO2 three-ply composite microspheres: synthesis, characterization, and application in detecting melamine with their surface-enhanced Raman scattering. J Phys Chem C 114:7738–7742CrossRefGoogle Scholar
  125. 125.
    Yu SH, Liu ZG, Wang WX, Jin L, Xu WQ, Wu YQ (2018) Disperse magnetic solid phase microextraction and surface enhanced Raman scattering (Dis-MSPME-SERS) for the rapid detection of trace illegally chemicals. Talanta 178:498–506CrossRefGoogle Scholar
  126. 126.
    Chen JH, Pang S, He LL, Nugen SR (2016) Highly sensitive and selective detection of nitrite ions using Fe3O4@SiO2/Au magnetic nanoparticles by surface-enhanced Raman spectroscopy. Biosens Bioelectron 85:726–733CrossRefGoogle Scholar
  127. 127.
    Mezni A, Balti I, Mlayah A, Jouini N, Smiri LS (2013) Hybrid Au-Fe3O4 nanoparticles: plasmonic, surface enhanced raman scattering, and phase transition properties. J Phys Chem C 117:16166–16174CrossRefGoogle Scholar
  128. 128.
    Cai WY, Tang XH, Sun B, Yang LB (2014) Highly sensitive in situ monitoring of catalytic reactions by surface enhancement Raman spectroscopy on multifunctional Fe3O4/C/Au NPs. Nanoscale 6:7954–7958CrossRefGoogle Scholar
  129. 129.
    Lv B, Sun ZL, Zhang JF, Jing CY (2017) Multifunctional satellite Fe3O4-Au@TiO2 nano-structure for SERS detection and photo-reduction of Cr(VI). Colloid Surf A 513:234–240CrossRefGoogle Scholar
  130. 130.
    Qin SH, Cai WY, Tang XH, Yang LB (2014) Sensitively monitoring photodegradation process of organic dye molecules by surface-enhanced Raman spectroscopy based on Fe3O4@SiO2@TiO2@Ag particle. Analyst 139:5509–5515CrossRefGoogle Scholar
  131. 131.
    Ding QQ, Zhou HJ, Zhang HM, Zhang YX, Wang GZ, Zhao HJ (2016) 3D Fe3O4@Au@Ag nanoflowers assembled magnetoplasmonic chains for in situ SERS monitoring of plasmon-assisted catalytic reactions. J Mater Chem A 4:8866–8874CrossRefGoogle Scholar
  132. 132.
    Wu Y, Yang H, Zhu L, Xie AJ, Li SK, Song JM, Shen YH (2014) Multifunctional SERS substrates of Fe3O4@Ag2Se/Ag: construction, properties and application. Anal Methods 6:7083–7087CrossRefGoogle Scholar
  133. 133.
    Ye M, Wei ZW, Hu F et al (2015) Fast assembling microarrays of superparamagnetic Fe3O4@Au nanoparticle clusters as reproducible substrates for surface-enhanced Raman scattering. Nanoscale 7:13427–13437CrossRefGoogle Scholar
  134. 134.
    Gao Q, Zhao AW, Gan ZB et al (2012) Facile fabrication and growth mechanism of 3D flower-like Fe3O4 nanostructrues and their application as SERS substrates. CrystEngComm 14:4834–4842CrossRefGoogle Scholar
  135. 135.
    Chen FH, Wang YW, Chen QT, Han LF, Chen ZJ, Fang SM (2014) Multifunctional nanocomposites of Fe3O4–graphene–Au for repeated use in simultaneous adsorption, in situ SERS detection and catalytic reduction of 4-nitrophenol in water. Mater Res Express 1:299–308Google Scholar
  136. 136.
    Ding GH, Xie S, Zhu YM, Liu Y, Wang L, Xu FG (2015) Graphene oxide wrapped Fe3O4@Au nanohybrid as SERS substrate for aromatic dye detection. Sensor Actuat B-Chem 221:1084–1093CrossRefGoogle Scholar
  137. 137.
    Zhang LL, Bao ZW, Yu XX et al (2016) Rational design of α–Fe2O3/reduced graphene oxide composites: rapid detection and effective removal of organic pollutants. ACS Appl Mater Interface 8:6431–6438CrossRefGoogle Scholar
  138. 138.
    An Q, Zhang P, Li JM, Ma WF, Guo J, Hu J, Wang CC (2012) Silver-coated magnetite-carbon core–shell microspheres as substrate enhanced SERS probes for detection of trace persistent organic pollutants. Nanoscale 4:5210–5216CrossRefGoogle Scholar
  139. 139.
    Song J, Chen ZP, Jin JW, Chen Y, Yu RQ (2014) Quantitative surface-enhanced Raman spectroscopy based on the combination of magnetic nanoparticles with an advanced chemometric model. Chemom Intell Lab 135:31–36CrossRefGoogle Scholar
  140. 140.
    Song D, Yang R, Wang CW, Xiao R, Long F (2016) Reusable nanosilver-coated magnetic particles for ultrasensitive SERS-based detection of malachite green in water samples. Sci Rep 6:22870–22879CrossRefGoogle Scholar
  141. 141.
    Niu CY, Zou BF, Wang YQ, Cheng L, Zheng HH, Zhou SM (2016) Highly sensitive and reproducible SERS performance from uniform film assembled by magnetic noble metal composite microspheres. Langmuir 32:858–863CrossRefGoogle Scholar
  142. 142.
    Sun ZL, Du JJ, Lv B, Jing CY (2016) Satellite Fe3O4@SiO2–Au SERS probe for trace Hg2+ detection. RSC Adv 6:73040–73044CrossRefGoogle Scholar
  143. 143.
    Du JJ, Jing CY (2011) Preparation of Fe3O4@Ag SERS substrate and its application in environmental Cr(VI) analysis. J Colloid Interface Sci 358:54–61CrossRefGoogle Scholar
  144. 144.
    Du JJ, Cui JL, Jing CY (2014) Rapid in situ identification of arsenic species using a portable Fe3O4@Ag SERS sensor. Chem Commun 50:347–349CrossRefGoogle Scholar
  145. 145.
    Gan ZB, Zhao AW, Zhang MF et al (2013) Fabrication and magnetic-induced aggregation of Fe3O4-noble metal composites for superior SERS performances. J Nanopart Res 15:15662–15666CrossRefGoogle Scholar
  146. 146.
    Esenturk EN, Walker ARH (2013) Gold nanostar @ iron oxide core-shell nanostructures: synthesis, characterization, and demonstrated surface-enhanced Raman scattering properties. J Nanopart Res 15:1364–1374CrossRefGoogle Scholar
  147. 147.
    Wang ZJ, Wu LN, Wang FP, Jiang ZH, Shen BZ (2013) Durian-like multi-functional Fe3O4–Au nanoparticles: synthesis, characterization and selective detection of benzidine. J Mater Chem A 1:9746–9751CrossRefGoogle Scholar
  148. 148.
    Zhu SM, Fan CZ, Wang JQ, He JN, Liang EJ, Chao MJ (2015) Realization of high sensitive SERS substrates with one-pot fabrication of Ag–Fe3O4 nanocomposites. J Colloid Interface Sci 438:116–121CrossRefGoogle Scholar
  149. 149.
    Liu B, Bai C, Zhao D et al (2016) Novel ferroferric oxide/polystyrene/silver core–shell magnetic nanocomposite microspheres as regenerable substrates for surface-enhanced Raman scattering. Appl Surf Sci 364:628–635CrossRefGoogle Scholar
  150. 150.
    Shen M, Chen SQ, Jia WP, Fan GD, Jin YX, Liang HD (2016) Facile synthesis of Ag@Fe3O4@C–Au core-shell microspheres for surface-enhanced Raman scattering. Gold Bull 49:103–109CrossRefGoogle Scholar
  151. 151.
    Caro C, Sayagues MJ, Franco V, Conde A, Zaderenko P, Gámez F (2016) A hybrid silver-magnetite detector based on surface enhanced Raman scattering for differentiating organic compounds. Sensor Actuat B-Chem 228:124–133CrossRefGoogle Scholar
  152. 152.
    Du JJ, Jing CY (2011) Preparation of thiol modified Fe3O4@Ag magnetic SERS probe for PAHs detection and identification. J Phys Chem C 115:17829–17835CrossRefGoogle Scholar
  153. 153.
    Hu YX, Sun YG (2012) Stable magnetic hot spots for simultaneous concentration and ultrasensitive surface-enhanced Raman scattering detection of solution analytes. J Phys Chem C 116:13329–13335CrossRefGoogle Scholar
  154. 154.
    Shen JH, Zhu YH, Yang XL, Zong J, Li CZ (2013) Multifunctional Fe3O4@Ag/SiO2/Au core–shell microspheres as a novel SERS-activity label via long-range plasmon coupling. Langmuir 29:690–695CrossRefGoogle Scholar
  155. 155.
    Liu HL, Yang LB, Liu JH (2016) Three-dimensional SERS hot spots for chemical sensing: towards developing a practical analyzer. Trac-Trend Anal Chem 80:364–372CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringJiangxi Normal UniversityNanchangPeople’s Republic of China

Personalised recommendations