Advertisement

Journal of Materials Science

, Volume 53, Issue 10, pp 7466–7474 | Cite as

Electronic and magnetic properties of the N monodoping and (Mn, N)-codoped ZrS2

Computation

Abstract

Electronic and magnetic properties of the N monodoping and (Mn, N)-codoped ZrS2 are investigated using the first-principles calculation. We find that the N monodoping ZrS2 monolayer is nonmagnetic metallic, while the (Mn, N)-codoped ZrS2 monolayer shows magnetic material properties. The first, second and third nearest-neighboring (Mn, N)-codoped ZrS2 monolayer shows half-metallic material, magnetic semiconductor and magnetic metal properties, respectively. Mn atom induces highly localized states within the band gap. The polarized charges mostly come from Mn 3d orbitals, less from the 2p orbitals of N and 3p orbitals of S atoms, and hardly from the 4d orbitals of the neighboring Zr atoms. As well as, we find that hybridization between the Mn 3d and the S 3p or N 2p orbitals leads to the ferromagnetic and antiferromagnetic coupling. The present work provides a route to harness the magnetic properties of ZrS2 monolayer for spintronic applications.

Notes

Acknowledgements

This work is supported by a Grant from the National Natural Science Foundation of China (NSFC) under the Grant No. 11504092 and Training plan of youth backbone teacher of institution of higher learning of Henan province and High Performance Computing Center of Henan Normal University.

References

  1. 1.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  2. 2.
    Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109CrossRefGoogle Scholar
  3. 3.
    Peng Chen Xu, Zhao Tianxing Wang, Dai Xianqi, Xia Congxin (2016) Electronic and magnetic properties of Ag-doped monolayer WS2 by Stain. J Alloys Comp 680:659–664CrossRefGoogle Scholar
  4. 4.
    Peng Chen Xu, Zhao Tianxing Wang, Dai Xianqi, Xia Congxin (2016) Strain-dependent electronic and magnetic properties of Au-doped WS2 monolayer. Solid State Commun 230:35–39CrossRefGoogle Scholar
  5. 5.
    Huang Y, Sutter E, Sadowski JT, Cotlet M, Monti OLA, Racke DA, Neupane MR, Wickramaratne D, Lake RK, Parkinson BA, Sutter P (2014) Tin disulfide—an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics. ACS Nano 8:10743–10755CrossRefGoogle Scholar
  6. 6.
    Xia C, Peng Y, Zhang H, Wang T, Wei S, Jia Y (2014) The characteristics of n- and p-type dopants in SnS2 monolayer nanosheets. Phys Chem Chem Phys 16:19674–19680CrossRefGoogle Scholar
  7. 7.
    Liu H, Neal AT, Zhu Z, Luo Z, Xu X, Tom´anek D, Ye PD (2014) Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8:4033–4041CrossRefGoogle Scholar
  8. 8.
    Li L, Yu Y, Ye GJ, Ge Q, Ou X, Wu H, Feng D, Chen XH, Zhang Y (2014) Black phosphorus field-effect transistors. Nat Nanotechnol 9:372–377CrossRefGoogle Scholar
  9. 9.
    Zhang S, Yan Z, Li Y, Chen Z, Zeng H (2015) Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect–direct band-gap transitions. Angew Chem 127:3155–3158CrossRefGoogle Scholar
  10. 10.
    Xia C, Xue B, Wang T, Peng Y, Jia Y (2015) Interlayer coupling effects on Schottky barrier in the arsenene–graphene van der Waals heterostructures. Appl Phys Lett 107:193107CrossRefGoogle Scholar
  11. 11.
    Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C, Zhi C (2010) Boron nitride nanotubes and nanosheets. ACS Nano 4:2979–2993CrossRefGoogle Scholar
  12. 12.
    Xia C, Peng Y, Wei S, Jia Y (2013) The feasibility of tunable p-type Mg doping in a GaN monolayer nanosheet. Acta Mater 61:7720–7725CrossRefGoogle Scholar
  13. 13.
    Hu P, Wang L, Yoon M, Zhang J, Feng W, Wang X, Wen Z, Idrobo JC, Miyamoto Y, Geohegan DB, Xiao K (2013) Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett 13:1649–1654CrossRefGoogle Scholar
  14. 14.
    Li XF, Lin MW, Puretzky AA, Idrobo JC, Ma C, Chi MF, Yoon M, Rouleau CM, Kravchenko II, Geohegan DB, Xiao K (2014) Controlled vapor phase growth of single crystalline, two-dimensional GaSe crystals with high photoresponse. Sci Rep 4:5497CrossRefGoogle Scholar
  15. 15.
    Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712CrossRefGoogle Scholar
  16. 16.
    Ma Y, Dai Y, Guo M, Niu C, Zhu Y, Huang B (2012) Evidence of the existence of magnetism in pristine VX2 monolayers (X = S, Se) and their strain-induced tunable magnetic properties. ACS Nano 6:1695–1701CrossRefGoogle Scholar
  17. 17.
    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C-Y, Galli G, Wang F (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10:1271–1275CrossRefGoogle Scholar
  18. 18.
    Ao L, Pham A, Xiao HY, Zu XT, Li S (2016) Theoretical prediction of long-range ferromagnetism in transition-metal atom-doped d(0) dichalcogenide single layers SnS2 and ZrS2. Phys Chem Chem Phys 18:25151–25160CrossRefGoogle Scholar
  19. 19.
    Zhao X, Xia C, Dai X (2015) Magnetic properties of two nearest Cu-doped monolayer WS2: a first-principles study. Solid State Commun 217:66–69CrossRefGoogle Scholar
  20. 20.
    Li L, Wang H, Fang XS, Zhai TY, Bandoa Y, Golberga D (2011) High-performance Schottky solar cells using ZrS2 nanobelt networks. Energy Environ Sci 4:2586–2590CrossRefGoogle Scholar
  21. 21.
    Tao Y, Wu X, Wang W, Wang J (2015) Flexible photodetector from ultraviolet to near infrared based on a SnS2 nanosheet microsphere film. J Mater Chem C 3:1347–1353CrossRefGoogle Scholar
  22. 22.
    Yu J, Xu C-Y, Ma F-X, Hu S-P, Zhang Y-W, Zhen L (2014) Monodisperse SnS2 nanosheets for high-performance photocatalytic hydrogen generation. ACS Appl Mater Interfaces 6:22370–22377CrossRefGoogle Scholar
  23. 23.
    Liu X, Zhao H, Xie J, Wang K, Lv P, Gao C (2014) SnS2 based anode materials for lithium–ion batteries. Progr Chem 26:1586–1595Google Scholar
  24. 24.
    Zhou M, Lou XW, Xie Y (2013) Two-dimensional nanosheets for photoelectrochemical water splitting: possibilities and opportunities. Nano Today 8:598–618CrossRefGoogle Scholar
  25. 25.
    Zhao X, Xia C, Wang T, Dai X (2015) Effect of structural defects on electronic and magnetic properties of pristine and Mn-doped MoS2 monolayer. Solid State Commun 220:31–35CrossRefGoogle Scholar
  26. 26.
    De D, Manongdo J, See S, Zhang V, Guloy A, Peng H (2013) High on/off ratio field effect transistors based on exfoliated crystalline SnS2 nano-membranes. Nanotechnology 24:2CrossRefGoogle Scholar
  27. 27.
    Wen Y, Zhu Y, Zhang S (2015) Low temperature synthesis of ZrS2 nanoflakes and their catalytic activity. RSC Adv 5:66082–66085CrossRefGoogle Scholar
  28. 28.
    Zhao Xu, Wang Tianxing, Wei Shuyi, Dai Xianqi (2016) Electronic and magnetic properties of X-doped (X = Ti, Zr, Hf) tungsten disulphide monolayer. J Alloys Compound 654:574–579CrossRefGoogle Scholar
  29. 29.
    Zhang M, Zhu Y, Wang X, Feng Q, Qiao S, Wen W, Chen Y, Cui M, Zhang J, Cai C, Xie L (2015) Controlled synthesis of ZrS2 Monolayer and few layers on hexagonal boron nitride. J Am Chem Soc 137:7051–7054CrossRefGoogle Scholar
  30. 30.
    Li S, Wang C, Qiu H (2015) Single- and few-layer ZrS2 as efficient photocatalysts for hydrogen production under visible light. Int J Hydrogen Energy 40:15503–15509CrossRefGoogle Scholar
  31. 31.
    Li Y, Kang J, Li J (2014) Indirect-to-direct band gap transition of the ZrS2 monolayer by strain: first-principles calculations. RSC Adv 4:7396–7401CrossRefGoogle Scholar
  32. 32.
    Durgun E, Bilc DI, Ciraci S, Ghosez P (2012) Hydrogen-saturated silicon nanowires heavily doped with interstitial and substitutional transition metals. J Phys Chem C 116:15713–15722CrossRefGoogle Scholar
  33. 33.
    Ataca C, Ciraci S (2011) Functionalization of single-layer MoS2 honeycomb structures. J Phys Chem C 115:13303–13311CrossRefGoogle Scholar
  34. 34.
    Xie Y, Zhang JM (2011) First-principles study on substituted doping of BN nanotubes by transition metals V, Cr and Mn. Comput Theor Chem 976:215–220CrossRefGoogle Scholar
  35. 35.
    Zhao X, Xia C, Dai X (2015) Electronic and magnetic properties of Mn-doped monolayer WS2. Solid State Commun 215–216:1–4Google Scholar
  36. 36.
    Pan H, Yi JB, Shen L, Wu RQ, Yang JH, Lin JY, Feng YP, Ding J, Van LH, Yin JH (2007) Room-temperature ferromagnetism in carbon-doped ZnO. Phys Revi Lett 99:127201CrossRefGoogle Scholar
  37. 37.
    Pan H, Feng YP (2008) Magnetic properties of carbon doped CdS: a first-principles and Monte Carlo study. Phys Rev B 77:125211CrossRefGoogle Scholar
  38. 38.
    Yue Q, Chang SL, Qin SQ, Li JB (2013) Functionalization of monolayer MoS2 by substitutional doping: a first-principles study. Phys Lett A 377(19–20):1362–1367CrossRefGoogle Scholar
  39. 39.
    Shen L, Wu RQ, Pan H, Peng GW, Yang M, Sha ZD, Feng YP (2008) Mechanism of ferromagnetism in nitrogen-doped ZnO: first-principle calculations. Phys Rev B 78:073306CrossRefGoogle Scholar
  40. 40.
    Yamamoto T, Katayama-Yoshida H (1999) Solution using a codoping method to unipolarity for the fabrication of p-Type ZnO. Jpn J Appl Phys 38:166CrossRefGoogle Scholar
  41. 41.
    Gai YQ, Li JB, Li SS, Xia JB, Wei SH (2009) Design of narrow-gap TiO2: a passivated codoping approach for enhanced photoelectrochemical activity. Phys Rev Lett 102:036402CrossRefGoogle Scholar
  42. 42.
    Cheney CP, Vilmercati P, Martin EW, Chiodi M, Gavioli L, Regmi M, Eres G, Callcott TA, Weitering HH, Mannella N (2014) Origins of electronic band gap reduction in Cr/N codoped TiO2. Phys Rev Lett 112:036404CrossRefGoogle Scholar
  43. 43.
    Yin WJ, Wei SH, Al-Jassim MM, Yan YF (2011) Double- hole-mediated coupling of dopants and its impact on band gap engineering in TiO2. Phys Rev Lett 106:066801CrossRefGoogle Scholar
  44. 44.
    Miao Y, Huang Y, Fang Q, Yang Z, Kewei X, Ma F, Paul K (2016) Tuning of electronic states and magnetic polarization in monolayered MoS2 by codoping with transition metals and nonmetals. J Mater Sci 51:9514–9525.  https://doi.org/10.1007/s10853-016-0195-y CrossRefGoogle Scholar
  45. 45.
    Friend RH, Yoffe AD (1987) Electronic properties of intercalation complexes of the transition metal dichalcogenides. Adv Phys 36:1CrossRefGoogle Scholar
  46. 46.
    Jiang H (2011) Structural and electronic properties of ZrX2 and HfX2 (X ¼ S and Se)from first principles calculations. J Chem Phys 134:204705CrossRefGoogle Scholar
  47. 47.
    Shi HL, Pan H, Zhang YW, Boris Yakobson I (2013) Strong ferromagnetism in hydrogenated monolayer MoS2 tuned by strain. Phys Rev B 88:205305CrossRefGoogle Scholar
  48. 48.
    Peng YT, Xia CX, Zhang H, Wang TX, Wei SY, Jia Y (2014) Characteristics of p-type Mg-doped GaS and GaSe nanosheets. Phys Chem Chem Phys 16:18799–18804CrossRefGoogle Scholar
  49. 49.
    Peng YT, Xia CX, Zhang H, Wang TX, Wei S, Jia Y (2014) Tunable electronic structures of p-type Mg doping in AlN nanosheet. Appl Phys 116:044306CrossRefGoogle Scholar
  50. 50.
    Mishra R, Wu Z, Pennycook SJ, Pantelides ST, Idrobo JC (2013) Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides. Phys Rev B 88:144409CrossRefGoogle Scholar
  51. 51.
    Chen Q, Wang JL (2009) Structural, electronic, and magnetic properties of TMZn11O12 and TM2Zn10O12 clusters (TM = Sc, Ti, V, Cr, Mn, Fe Co, Ni, and Cu). Chem Phys Lett 474:336–341CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Physics and Materials ScienceHenan Normal UniversityXinxiangChina

Personalised recommendations