Comparative investigation of hydroxyapatite/collagen composites prepared by CaCl2 addition at different time points in collagen self-assembly process

Abstract

Mineralization of collagen is a common combination process mainly involving collagen self-assembly and hydroxyapatite formation. Previous measurement of turbidity showed that collagen self-assembly follows the nucleation–growth model. In the present study, 1.0 M CaCl2 was mixed with 0.6 mg/mL collagen solution in PBS (10 mM phosphate, 80 mM NaCl, pH 7.2, and T = 35 °C) at the beginning of the lag period, at the beginning of the growth period, at t1/2 (the time to reach half of the total turbidity change), and during the plateau period. Four different hydroxyapatite/collagen (HAp/COL) composites were prepared [COL (1), COL (2), COL (3), and COL (4)]. The optical densities increased with CaCl2 addition, and a wave trough appeared in the mineralization kinetic curves because of amorphous/crystalline conversion. HAp formation was confirmed by Fourier transform infrared spectroscopy and X-ray diffraction measurements. Energy-dispersive spectroscopy results showed that the calcium/phosphorus ratio of COL (2) is close to that of human bone. Images obtained by scanning electron microscopy revealed that nanosized plate-like HAp of COL (2) formed and became uniformly embedded in collagen, whereas HAp formed large clusters in COL (1), COL (3), and COL (4). Quantitation analyses of collagen and HAp incorporated into composites showed that mineralization at different time points promote collagen fibril generation and have little impact on the HAp content. These results suggest that the composite fabricated by addition of CaCl2 at the beginning of the growth period is a promising material for bone repair and implantation.

This is a preview of subscription content, access via your institution.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1

    Bauer TW, Muschler GF (2000) Bone graft materials: an over-view of the basic science. Clin Orthop Relat Res 371:10–27

    Google Scholar 

  2. 2

    Silber JS, Anderson DG, Daffner SD, Brislin BT, Leland J, Hilibrand AS et al (2003) Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine 28(2):134–139

    Google Scholar 

  3. 3

    Bos CD, Goldberg VM, Zika JM, Heiple KG, Powell AE (1983) Immune responses of rate to frozen bone allograft. J Bone Jt Surg 65(2):239–246

    CAS  Google Scholar 

  4. 4

    Kadler KE, Holmes DF, Trotter JA, Chapman JA (1996) Collagen fibril formation. Biochem J 316(1):1–11

    CAS  Google Scholar 

  5. 5

    Cui FZ, Li Y, Ge J (2007) Self-assembly of mineralized collagen composites. Mater Sci Eng R Rep 57(1):1–27

    Google Scholar 

  6. 6

    Bozec L, Heijden G, Horton M (2007) Collagen fibrils: nanoscale ropes. Biophys J 92(1):70–75

    CAS  Google Scholar 

  7. 7

    Liu WB, Qu SX, Shen R, Jiang CX, Li XH, Feng B et al (2006) Influence of pH values on preparation of hydroxyapatite/gelatin composites. J Mater Sci 41:1851–1853. https://doi.org/10.1007/s10853-005-3184-0

    CAS  Article  Google Scholar 

  8. 8

    Robinson R, Watson M (1952) Collagen-crystal relationships in bone as seen in the electron microscope. Anat Rec 114(3):383–409

    CAS  Google Scholar 

  9. 9

    Robinson RA (1952) An electron-microscopic study of the crystalline inorganic component of bone and its relationship to the organic matrix. J Bone Jt Surg 34(2):389–476

    Google Scholar 

  10. 10

    Fernandez-Moran H, Engström A (1957) Electron microscopy and x-ray diffraction of bone. Biochem Biophys Acta 23:260–264

    CAS  Google Scholar 

  11. 11

    Deshpande AS, Beniash E (2008) Bioinspired synthesis of mineralized collagen fibrils. Cryst Growth Des 8:3084–3090

    CAS  Google Scholar 

  12. 12

    Alexander B, Daulton TL, Genin GM, Lipner J, Pasteris JD, Wopenka B et al (2012) The nanometre-scale physiology of bone: steric modelling and scanning transmission electron microscopy of collagen-mineral structure. J R Soc Interface 9:1774–1786

    CAS  Google Scholar 

  13. 13

    Bhowmik R, Katti KS, Katti DR (2007) Mechanics of molecular collagen is influenced by hydroxyapatite in natural bone. J Mater Sci 42:8795–8803. https://doi.org/10.1007/s10853-007-1914-1

    CAS  Article  Google Scholar 

  14. 14

    Nair AK, Gautieri A, Chang SW, Buehler MJ (2013) Molecular mechanics of mineralized collagen fibrils in bone. Nat Commun 4:1724

    Google Scholar 

  15. 15

    Mann S (1993) Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365(6446):499–505

    CAS  Google Scholar 

  16. 16

    Jee SS, Culver L, Li YP, Douglas EP, Gower LB (2010) Biomimetic mineralization of collagen via an enzyme-aided PILP process. J Cryst Growth 312:1249–1256

    CAS  Google Scholar 

  17. 17

    Tampieri A, Celotti G, Landi E, Sandri M, Roveri N, Falini G (2003) Biologically inspired synthesis of bone-like composite: self-assembled collagen fibers/hydroxyapatite nanocrystals. J Biomater Mater Res A 67:618–625

    Google Scholar 

  18. 18

    Zhang W, Huang ZL, Liao SS, Cui FZ (2003) Nucleation sites of calcium phosphate crystals during collagen mineralization. J Am Ceram Soc 86:1052–1054

    CAS  Google Scholar 

  19. 19

    Cui FZ, Wang Y, Cai Q, Zhang W (2008) Conformation change of collagen during the initial stage of biomineralization of calcium phosphate. J Mater Chem 18:3835–3840

    CAS  Google Scholar 

  20. 20

    Gelman RA, Williams BR, Piez KA (1979) Collagen fibril formation. Evidence for a multistep process. J Biol Chem 254:180–186

    CAS  Google Scholar 

  21. 21

    Tian H, Li C, Liu W, Li J, Li G (2013) The influence of chondroitin 4-sulfate on the reconstitution of collagen fibrils in vitro. Colloids Surf B Biointerfaces 105:259–266

    CAS  Google Scholar 

  22. 22

    Yuan L, Veis A (1973) The self-assembly of collagen molecules. Biopolymers 12:1437–1444

    CAS  Google Scholar 

  23. 23

    Williams BR, Gelman RA, Poppke DC, Piez KA (1978) Collagen fibril formation. Optimal in vitro conditions and preliminary kinetic results. J Biol Chem 253:6578–6585

    CAS  Google Scholar 

  24. 24

    Kobayashi K, Ito T, Hoshino T (1985) Electron microscopic demonstration of acid-labile, 4D-staggered intermolecular association of collagen formed in vitro. Collagen Relat Res 5:253–260

    CAS  Google Scholar 

  25. 25

    Bernengo JC, Herbage D, Marion C, Roux B (1978) Intermolecular interactions studies on native and enzyme-treated acidsoluble collagen. Biochim Biophys Acta (BBA) Protein Struct 532:305–314

    CAS  Google Scholar 

  26. 26

    Silver FH, Langley KH, Trelstad RL (1979) Type I collagen fibrillogenesis: initiation via a reversible linear growth step. Biopolymers 18:2523–2535

    CAS  Google Scholar 

  27. 27

    Christiansen DL, Huang EK, Silver FH (2000) Assembly of type I collagen: fusion of fibril subunits and the influence of fibril diameter on mechanical properties. Matrix Biol 19:409–420

    CAS  Google Scholar 

  28. 28

    Silver FH, Freeman JW, Seehra GP (2003) Collagen self-assembly and the development of tendon mechanical properties. J Biomech 36:1529–1553

    Google Scholar 

  29. 29

    Yang H, Deng Y, Xu S, Liu W, Li G (2017) Investigation on the interaction of collagen molecules in solution with different acetic acid concentrations. J Appl Polym Sci 134:45255

    Google Scholar 

  30. 30

    Tian ZH, Li CH, Duan L, Li GY (2014) Physicochemical properties of collagen solutions cross-linked by glutaraldehyde. Connect Tissue Res 55:239–247

    CAS  Google Scholar 

  31. 31

    Li ZR, Wang B, Chi CF, Zhang QH, Gong YD, Tang JJ et al (2013) Isolation and characterization of acid soluble collagens and pepsin soluble collagens from the skin and bone of Spanish mackerel (Scomberomorous niphonius). Food Hydrocoll 31:103–113

    CAS  Google Scholar 

  32. 32

    Hayashi T, Nagai Y (1974) Factors affecting the interactions of collagen molecules as observed by in vitro fibril formation. J Biochem 76:177–186

    CAS  Google Scholar 

  33. 33

    Cui W, Li X, Xie C, Zhuang H, Zhou S, Weng J (2010) Hydroxyapatite nucleation and growth mechanism on electrospun fibers functionalized with different chemical groups and their combinations. Biomaterials 31:4620–4629

    CAS  Google Scholar 

  34. 34

    Thien DVH, Hsiao SW, Ho MH, Li CH, Shih JL (2013) Electrospun chitosan/hydroxyapatite nanofibers for bone tissue engineering. J Mater Sci 48:1640–1645. https://doi.org/10.1007/s10853-012-6921-1

    CAS  Article  Google Scholar 

  35. 35

    Niu X, Fan R, Tian F, Guo X, Li P, Feng Q et al (2017) Calcium concentration dependent collagen mineralization. Mater Sci Eng C 73:137–143

    CAS  Google Scholar 

  36. 36

    Kim HM (2003) Ceramic bioactivity and related biomimetic strategy. Curr Opin Solid State Mater Sci 7:289–299

    CAS  Google Scholar 

  37. 37

    Ji J, Bar-On B, Wagner HD (2012) Mechanics of electrospun collagen and hydroxyapatite/collagen nanofibers. J Mech Behav Biomed Mater 13:185–193

    CAS  Google Scholar 

  38. 38

    Rubin MA, Jasiuk I, Taylor J, Rubin J, Ganey T, Apkarian RP (2003) TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 33:270–282

    Google Scholar 

  39. 39

    Cai Y, Liu Y, Yan W, Hu Q, Tao J, Zhang M et al (2007) Role of hydroxyapatite nanoparticle size in bone cell proliferation. J Mater Chem 17:3780–3787

    CAS  Google Scholar 

  40. 40

    Kong X, Sun X, Cui F, Ma C (2006) Effect of solute concentration on fibroin regulated biomineralization of calcium phosphate. Mater Sci Eng C 26:639–643

    CAS  Google Scholar 

  41. 41

    Ma J (2014) A molecular dynamics study on the nucleation of calcium phosphate regulated by collagen. J Mater Sci 49:3099–3106. https://doi.org/10.1007/s10853-013-8011-4

    CAS  Article  Google Scholar 

  42. 42

    Orgel LE (2006) Geothermal synthesis and metabolism. Astrobiology 6:297–298. https://doi.org/10.1089/ast.2006.6.297

    CAS  Article  Google Scholar 

  43. 43

    Orgel J, San Antonio JD, Antipova O (2011) Molecular and structural mapping of collagen fibril interactions. Connect Tissue Res 52:2–17

    CAS  Google Scholar 

  44. 44

    Wu K, Li G (2015) Investigation of the lag period of collagen fibrillogenesis using fluorescence anisotropy. Appl Spectrosc 69:1121–1128

    CAS  Google Scholar 

  45. 45

    Li Y, Douglas EP (2013) Effects of various salts on structural polymorphism of reconstituted type I collagen fibrils. Colloids Surf B Biointerfaces 112(3):42–50

    CAS  Google Scholar 

  46. 46

    Weinstock A, King PC, Wuthier RE (1967) The ion-binding characteristics of reconstituted collagen. Biochem J 102:983–988

    CAS  Google Scholar 

  47. 47

    Bensusan HB, Hoyt BL (1958) The effect of various parameters on the rate of formation of fibers from collagen solutions. J Am Chem Soc 80:719–724

    CAS  Google Scholar 

  48. 48

    Wild M, Pomp W, Koenderink GH (2013) Thermal memory in self-assembled collagen fibril networks. Biophys J 105(1):200–210

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Nos. 21776184 and 21476147).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guoying Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bu, H., Li, G. Comparative investigation of hydroxyapatite/collagen composites prepared by CaCl2 addition at different time points in collagen self-assembly process. J Mater Sci 53, 6313–6324 (2018). https://doi.org/10.1007/s10853-018-2027-8

Download citation