Layer-by-layer nanostructured supercapacitor electrodes consisting of ZnO nanoparticles and multi-walled carbon nanotubes

Abstract

The study of nanostructures combining carbon and metal oxide materials in a synergistic way is propitious to achieve new nanocomposites with enhanced capacitive electrochemical properties for energy storage applications such as supercapacitors. Here, we investigate the electrochemical properties of electrodes containing nanostructured films made from layer-by-layer (LbL) multilayers consisting of ZnO nanoparticles (ZnONPs) complexed with polyallylamine hydrochloride (PAH) and multi-walled carbon nanotubes (MWNTs) for supercapacitor applications. The surface of PAH–ZnO/MWNT LbL films was analyzed by atomic force microscopy (AFM), which displayed a nanofilm with high superficial area and porosity due to the high interconnection of MWNTs and ZnONPs in the film’s multilayers. Cyclic voltammetry and galvanostatic charge–discharge measurements were used to evaluate the electrochemical properties of the films. A high observed areal capacitance of ca. 1000 μF/cm2 was achieved for a 10-bilayer LbL film at a current density of 1.0 × 10−5 A/cm2. Furthermore, the PAH–ZnO/MWNT LbL film exhibited a high cycling stability with a capacitive retention of 96% over 1000 cycles. These results demonstrate that the nanostructured PAH–ZnO/MWNT LbL film may be explored as supercapacitors electrodes for energy storage applications.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1

    Kwon SR, Harris J, Zhou T, Loufakis D, Boyd JD, Lutkenhaus JL (2017) Mechanically strong graphene/aramid nanofiber composite electrodes for structural energy and power. ACS Nano 11:6682–6690

    CAS  Article  Google Scholar 

  2. 2

    Li X, Wei B (2013) Supercapacitors based on nanostructured carbon. Nano Energy 2:159–173

    CAS  Article  Google Scholar 

  3. 3

    Yu G, Xie X, Pan L, Bao Z, Cui Y (2013) Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2:213–234

    CAS  Article  Google Scholar 

  4. 4

    Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5:72–88

    CAS  Article  Google Scholar 

  5. 5

    Lee SW, Kim J, Chen S, Hammond PT, Shao-Horn Y (2010) Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano 4:3889–3896

    CAS  Article  Google Scholar 

  6. 6

    Liu W, Yan X, Xue Q (2013) Multilayer hybrid films consisting of alternating graphene and titanium dioxide for high-performance supercapacitors. J Mater Chem C 1:1413–1422

    CAS  Article  Google Scholar 

  7. 7

    Ariga K, Minami K, Shrestha LK (2016) Nanoarchitectonics for carbon-material-based sensors. Analyst 14:2629–2638

    Article  Google Scholar 

  8. 8

    Oliveira ON Jr, Iost RM, Siqueira JR Jr, Crespilho FN, Caseli L (2014) Nanomaterials for diagnosis: challenges and applications in smart devices based on molecular recognition. ACS Appl Mater Interfaces 6:14745–14766

    CAS  Article  Google Scholar 

  9. 9

    Jeon J-W, Kwon S-R, Lutkenhaus JL (2015) polyaniline nanofiber/electrochemically reduced graphene oxide layer-by-layer electrodes for electrochemical energy storage. J Mater Chem A 3:3757–3767

    CAS  Article  Google Scholar 

  10. 10

    Shao L, Jeon J-W, Lutkenhaus JL (2014) Polyaniline nanofiber/vanadium pentoxide sprayed layer-by-layer electrodes for energy storage. J Mater Chem A 2:14421–14428

    CAS  Article  Google Scholar 

  11. 11

    Jeon J-W, O’Neal J, Shao L, Lutkenhaus JL (2013) Charge storage in polymer acid-doped polyaniline-based layer-by-layer electrodes. ACS Appl Mater Interfaces 5:10127–10136

    CAS  Article  Google Scholar 

  12. 12

    Ariga K, Hill JP, Ji QM (2007) Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys 9:2319–2340

    CAS  Article  Google Scholar 

  13. 13

    Morais PV, Gomes VF Jr, Silva ACA, Dantas NO, Schöning MJ, Siqueira JR Jr (2017) Nanofilm of ZnO nanocrystals/carbon nanotubes as biocompatible layer for enzymatic biosensors in capacitive field-effect devices. J Mater Sci 52:12314–12325. https://doi.org/10.1007/s10853-017-1369-y

    CAS  Article  Google Scholar 

  14. 14

    Kang Z, Gu Y, Yan X, Bai Z, Liu Y, Liu S, Zhang X, Zhang Z, Zhang X, Zhang Y (2015) Enhanced photoelectrochemical property of ZnO nanorods array synthesized on reduced graphene oxide for self-powered biosensing application. Biosens Bioelectron 64:499–504

    CAS  Article  Google Scholar 

  15. 15

    Zhang R, Xie J, Wang C, Liu J, Zheng X, Li Y, Yang X, Wang H-E, Su B-L (2017) Macroporous ZnO/ZnS/CdS composite spheres as efficient and stable photocatalysts for solar-driven hydrogen generation. J Mater Sci 52:11124–11134. https://doi.org/10.1007/s10853-017-1130-6

    CAS  Article  Google Scholar 

  16. 16

    Pelicano CM, Yanagi H (2017) Efficient solid-state perovskite solar cells based on nanostructured zinc oxide designed by strategic low temperature water oxidation. J Mater Chem C 5:8059–8070

    CAS  Article  Google Scholar 

  17. 17

    Xiao X, Han B, Chen G, Wang L, Wang Y (2017) Preparation and electrochemical performances of carbon sphere@ ZnO core–shell nanocomposites for supercapacitor applications. Sci Rep 7:40167. https://doi.org/10.1038/srep40167

    CAS  Article  Google Scholar 

  18. 18

    Sun J, Zan P, Ye L, Yang X, Zhao L (2017) Superior performance of ZnCo2O4/ZnO@ multiwall carbon nanotubes with laminated shape assembled as highly practical all-solid-state asymmetric supercapacitors. J Mater Chem A 5:9815–9823

    CAS  Article  Google Scholar 

  19. 19

    Madhu R, Veeramani V, Chen S-M, Veerakumar P, Liu S-B, Miyamoto N (2016) Functional porous carbon–ZnO nanocomposites for high-performance biosensors and energy storage applications. Phys Chem Chem Phys 18:16466–16475

    CAS  Article  Google Scholar 

  20. 20

    Ma W, Shi Q, Nan H, Hu Q, Zheng X, Geng B, Zhang X (2015) Hierarchical ZnO@MnO2@PPy ternary core–shell nanorod arrays: an efficient integration of active materials for energy storage. RSC Adv 5:39864–39869

    CAS  Article  Google Scholar 

  21. 21

    Aravinda LS, Nagaraja KK, Nagaraja HS, Bhat KU, Bhat BR (2013) ZnO/carbon nanotube nanocomposite for high energy density supercapacitors. Electrochim Acta 95:119–124

    CAS  Article  Google Scholar 

  22. 22

    Sousa CJA, Pereira MC, Almeida RJ, Loyola AM, Silva ACA, Dantas NO (2014) Synthesis and characterization of zinc oxide nanocrystals and histologic evaluation of their biocompatibility by means of intraosseous implants. Int Endod J 47:416–424

    CAS  Article  Google Scholar 

  23. 23

    Dantas NO, Damigo L, Qu F, Cunha JFR, Silva RS, Miranda KL, Vilela EC, Sartoratto PPC, Morais PC (2008) Raman investigation of ZnO and Zn1−xMnxO nanocrystals synthesized by precipitation method. J Non Cryst Solids 354:4827–4829

    CAS  Article  Google Scholar 

  24. 24

    Dantas NO, Damigo L, Qu F, Silva RS, Sartoratto PPC, Miranda KL, Vilela EC, Pelegrini F, Morais PC (2008) Structural and magnetic properties of ZnO and Zn1−xMnxO nanocrystals. J Non Cryst Solids 354:4727–4729

    CAS  Article  Google Scholar 

  25. 25

    Kwon SR, Elinski M, Batteas JD, Lutkenhaus JL (2017) Robust and flexible aramid nanofiber/graphene layer-by-layer electrodes. ACS Appl Mater Interfaces 9:17125–17135

    CAS  Article  Google Scholar 

  26. 26

    Siqueira JR Jr, Gasparotto LHS, Oliveira ON Jr, Zucolotto V (2008) Processing of electroactive nanostructured films incorporating carbon nanotubes and phthalocyanines for sensing. J Phys Chem C 112:9050–9055

    CAS  Article  Google Scholar 

  27. 27

    Gasparotto LHS, Castelhano ALB, Silva ACA, Dantas NO, Oliveira ON Jr, Siqueira JR Jr (2014) Dendrimer–carbon nanotube layer-by-layer film as an efficient host matrix for electrogeneration of ptco electrocatalysts. Phys Chem Chem Phys 16:2384–2389

    CAS  Article  Google Scholar 

  28. 28

    Gasparotto LHS, Castelhano ALB, Gabriel RC, Dantas NO, Oliveira ON Jr, Siqueira JR Jr (2013) Electrogeneration of platinum nanoparticles in a matrix of dendrimer/carbon nanotubes. Phys Chem Chem Phys 15:17887–17892

    CAS  Article  Google Scholar 

  29. 29

    Siqueira JR Jr, Gabriel RC, Zucolotto V, Silva ACA, Dantas NO, Gasparotto LHS (2012) Electrodeposition of catalytic and magnetic gold nanoparticles on dendrimer–carbon nanotube layer-by-layer films. Phys Chem Chem Phys 14:14340–14343

    CAS  Article  Google Scholar 

  30. 30

    Siqueira JR Jr, Molinnus D, Beging S, Schöning MJ (2014) Incorporating a hybrid urease–carbon nanotubes sensitive nanofilm on capacitive field-effect sensors for urea detection. Anal Chem 86:5370–5375

    CAS  Article  Google Scholar 

  31. 31

    Siqueira JR Jr, Werner CF, Bäcker M, Poghossian A, Zucolotto V, Oliveira ON Jr, Schöning MJ (2009) Layer-by-layer assembly of carbon nanotubes incorporated in light-addressable potentiometric sensors. J Phys Chem C 113:14765–14770

    CAS  Article  Google Scholar 

  32. 32

    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    CAS  Article  Google Scholar 

  33. 33

    Yoo JJ, Balakrishnan K, Huang JS, Meunier V, Sumpter BG, Srivastava A, Conway M, Reddy ALM, Yu J, Vajtai R, Ajayan PM (2011) Ultrathin planar graphene supercapacitors. Nano Lett 11:1423–1427

    CAS  Article  Google Scholar 

  34. 34

    Yu D, Dai L (2010) Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett 1:467–470

    CAS  Article  Google Scholar 

  35. 35

    Zhang Y, Li H, Pan L, Lu T, Sun Z (2009) Capacitive behavior of graphene–ZnO composite film for supercapacitors. J Electroanal Chem 634:68–71

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the financial support to the Brazilian Foundations CAPES (Grant 88881.119924/2016-01), FAPEMIG (Grant APQ-00756-16), and Rede Mineira de Química (FAPEMIG-CEX-RED-00010-14). We also thank Anish Patel of Texas A&M University for helpful discussion, and Prof. Anielle C. A. Silva and Prof. Noelio O. Dantas of Federal University of Uberlândia for providing ZnONPs samples for this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to José R. Siqueira Jr..

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest and no competing financial interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fávero, V.O., Oliveira, D.A., Lutkenhaus, J.L. et al. Layer-by-layer nanostructured supercapacitor electrodes consisting of ZnO nanoparticles and multi-walled carbon nanotubes. J Mater Sci 53, 6719–6728 (2018). https://doi.org/10.1007/s10853-018-2010-4

Download citation