Skip to main content
Log in

Easily recyclable photocatalyst Bi2WO6/MOF/PVDF composite film for efficient degradation of aqueous refractory organic pollutants under visible-light irradiation

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel composite film, Bi2WO6/MIL-53(Al)/PVDF, was successfully fabricated through a hydrothermal process combined with immersion phase inversion method and characterized by XRD, SEM, XPS, FTIR and UV–vis DRS techniques. The photocatalytic activity of the as-synthesized composite film was investigated through the degradation of dyes Rhodamine B (RhB), Methylene Blue and Malachite Green in water under visible-light irradiation. And the composite film prepared at the ratio of 6 wt% of 1.25-BWO/MIL (with optimal ratio of Bi2WO6 to MIL-53(Al)) to poly(vinylidene fluoride) (PVDF) casting solution showed the highest photocatalytic activity. A 95.3% photocatalytic degradation of RhB was achieved at 1.6 dm2/L of 6-BWO/MIL/PVDF dosage and 10 mg/L of initial RhB concentration. The increased photocatalyst dosage, optimal initial RhB concentration and weak acidity should be responsible for the increased photocatalytic activity. The photocatalytic degradation mechanism was investigated by quenching tests, revealing that the predominant reactive species in the “BWO/MIL/PVDF-RhBaq-visible light” system were h+, O −·2 and ·OH. The formation of heterojunction structure between Bi2WO6 and MIL-53(Al) improved the photocatalytic activity. Moreover, the recycling test of 6-BWO/MIL/PVDF composite film displayed its excellent reusability up to 15 cycles. The polymer coupling was demonstrated to be one of the valuable immobilization methods for powder photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Scheme 1
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Scheme 2
Figure 12

Similar content being viewed by others

References

  1. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  Google Scholar 

  2. Masih D, Ma Y, Rohani S (2017) Graphitic C3N4 based noble-metal-free photocatalyst systems: a review. App Catal B 206:556–588

    Article  Google Scholar 

  3. Antonopoulou M, Vlastos D, Konstantinou I (2015) Photocatalytic degradation of pentachlorophenol by N-F-TiO2: identification of intermediates, mechanism involved, genotoxicity and ecotoxicity evaluation. Photochem Photobiol Sci 14:520–527

    Article  Google Scholar 

  4. Kaur N, Shahi SK, Singh V (2015) Anomalous behavior of visible light active TiO2 for the photocatalytic degradation of different Reactive dyes. Photochem Photobiol Sci 14:2024–2034

    Article  Google Scholar 

  5. Mahy JG, Lambert SD, Léonard LM, Zubiaur A, Olu PY, Mahmoud A, Boschini F, Heinrichs B (2016) Towards a large scale aqueous sol-gel synthesis of doped TiO2: study of various metallic dopings for the photocatalytic degradation of p-nitrophenol. J Photochem Photobiol, A 329:189–202

    Article  Google Scholar 

  6. Rahaman H, Ghosh SK (2016) Soft-templated synthesis of Mn3O4 microdandelions for the degradation of alizarin red under visible light irradiation. RSC Adv 6:4531–4539

    Article  Google Scholar 

  7. Zhai C, Zhu M, Duan B, Ren F, Wang C, Yang P, Du Y (2015) Two dimensional MoS2/graphene composites as promising supports for Pt electrocatalysts towards methanol oxidation. J Power Sources 275:483–488

    Article  Google Scholar 

  8. Zhu M, Zhai C, Sun M, Hu Y, Yan B, Du Y (2017) Ultrathin graphitic C3N4 nanosheet as a promising visible-light-activated support for boosting photoelectrocatalytic methanol oxidation. Appl Catal B 203:108–115

    Article  Google Scholar 

  9. Hernándezalonso MD, Fresno F, Suárez S, Coronado JM (2009) Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ Sci 2:1231–1257

    Article  Google Scholar 

  10. Ma Y, Wang X, Jia Y, Chen X, Han H, Li C (2014) Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem Rev 114:9987–10043

    Article  Google Scholar 

  11. Li Z, Luo W, Zhang M, Feng J, Zou Z (2013) Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ Sci 6:347–370

    Article  Google Scholar 

  12. Tang L, Wang J, Zeng G, Liu Y, Deng Y, Zhou Y, Tang J, Wang J, Guo Z (2016) Enhanced photocatalytic degradation of norfloxacin in aqueous Bi2WO6 dispersions containing nonionic surfactant under visible light irradiation. J Hazard Mater 306:295–304

    Article  Google Scholar 

  13. Zhai J, Yu H, Li H, Sun L, Zhang K, Yang H (2015) Visible-light photocatalytic activity of graphene oxide-wrapped Bi2WO6 hierarchical microspheres. Appl Surf Sci 344:101–106

    Article  Google Scholar 

  14. Zhang Z, Wang W, Yin W, Meng S, Lu W, Sun S (2010) Inducing photocatalysis by visible light beyond the absorption edge: effect of upconversion agent on the photocatalytic activity of Bi2WO6. Appl Catal B 101:68–73

    Article  Google Scholar 

  15. Zhu S, Xu T, Fu H, Zhao J, Zhu Y (2007) Synergetic effect of Bi2WO6 photocatalyst with C60 and enhanced photoactivity under visible irradiation. Environ Sci Technol 41:6234–6239

    Article  Google Scholar 

  16. Ding X, Zhao K, Zhang L (2014) Enhanced photocatalytic removal of sodium pentachlorophenate with self-doped Bi2WO6 under visible light by generating more superoxide ions. Environ Sci Technol 48:5823

    Article  Google Scholar 

  17. Wang F, Li W, Gu S, Li H, Wu X, Liu X (2016) Samarium and nitrogen Co-Doped Bi2WO6 photocatalysts: synergistic effect of Sm(3 +)/Sm(2 +) redox centers and N-doped level for enhancing visible-light photocatalytic activity. Chem-A Eur J 22:12859–12867

    Article  Google Scholar 

  18. Lavergne M-A, Chanéac C, Portehault D, Cassaignon S, Durupthy O (2016) Optimized design of Pt-doped Bi2WO6 nanoparticle synthesis for enhanced photocatalytic properties. Eur J Inorg Chem 2016:2159–2165

    Article  Google Scholar 

  19. Wu QS, Cui Y, Yang LM, Zhang GY, Gao DZ (2015) Facile in situ photocatalysis of Ag/Bi2WO6 heterostructure with obviously enhanced performance. Sep Purif Technol 142:168–175

    Article  Google Scholar 

  20. Huang H, Liu K, Chen K, Zhang Y, Zhang Y, Wang S (2014) Ce and F comodification on the crystal structure and enhanced photocatalytic activity of Bi2WO6 photocatalyst under visible light irradiation. J Phys Chem C 118:14379–14387

    Article  Google Scholar 

  21. Chen F, Li D, Luo B, Chen M, Shi W (2017) Two-dimensional heterojunction photocatalysts constructed by graphite-like C3N4 and Bi2WO6 nanosheets: enhanced photocatalytic activities for water purification. J Alloys Compd 694:193–200

    Article  Google Scholar 

  22. Tang R, Su H, Sun Y, Zhang X, Li L, Liu C, Zeng S, Sun D (2016) Enhanced photocatalytic performance in Bi2WO6/SnS heterostructures: facile synthesis, influencing factors and mechanism of the photocatalytic process. J Colloid Interface Sci 466:388–399

    Article  Google Scholar 

  23. Meng X, Zhang Z (2017) Synthesis and characterization of plasmonic and magnetically separable Ag/AgCl-Bi2WO6@Fe3O4@SiO2 core-shell composites for visible light-induced water detoxification. J Colloid Interface Sci 485:296–307

    Article  Google Scholar 

  24. Wang T, Zhong S, Zou S, Jiang F, Feng L, Su X (2017) Novel Bi2WO6-coupled Fe3O4 magnetic photocatalysts: preparation, characterization and photodegradation of tetracycline hydrochloride. Photochem Photobiol 93:1034–1042

    Article  Google Scholar 

  25. Zhu Y, Wang Y, Ling Q, Zhu Y (2017) Enhancement of full-spectrum photocatalytic activity over BiPO4/Bi2WO6 composites. Appl Catal B 200:222–229

    Article  Google Scholar 

  26. Stavitski E, Pidko EA, Couck S, Remy T, Hensen EJM, Weckhuysen BM, Denayer J, Gascon J, Kapteijn F (2011) Complexity behind CO2 Capture on NH2-MIL-53(Al). Langmuir 27:3970–3976

    Article  Google Scholar 

  27. Peterson GW, DeCoste JB, Fatollahi-Fard F, Britt DK (2014) Engineering UiO-66-NH2 for toxic gas removal. Ind Eng Chem Res 53:701–707

    Article  Google Scholar 

  28. Nasalevich MA, Goesten MG, Savenije TJ, Kapteijn F, Gascon J (2013) Enhancing optical absorption of metal-organic frameworks for improved visible light photocatalysis. Chem Commun (Camb) 49:10575–10577

    Article  Google Scholar 

  29. Lin K-YA, Chang H-A (2015) Zeolitic imidazole framework-67 (ZIF-67) as a heterogeneous catalyst to activate peroxymonosulfate for degradation of rhodamine B in water. J Taiwan Inst Chem Eng 53:40–45

    Article  Google Scholar 

  30. Qian X, Yadian B, Wu R, Long Y, Zhou K, Zhu B, Huang Y (2013) Structure stability of metal-organic framework MIL-53(Al) in aqueous solutions. Int J Hydrogen Energy 38:16710–16715

    Article  Google Scholar 

  31. Jiang S, Yan J, Habimana F, Ji S (2016) Preparation of magnetically recyclable MIL-53(Al)@SiO2@Fe3O4 catalysts and their catalytic performance for Friedel-Crafts acylation reaction. Catal Today 264:83–90

    Article  Google Scholar 

  32. Li X, Pi Y, Wu L, Xia Q, Wu J, Li Z, Xiao J (2017) Facilitation of the visible light-induced Fenton-like excitation of H2O2 via heterojunction of g-C3N4/NH2-Iron terephthalate metal-organic framework for MB degradation. Appl Catal B 202:653–663

    Article  Google Scholar 

  33. Zheng J, Jiao Z (2017) Modified Bi2WO6 with metal-organic frameworks for enhanced photocatalytic activity under visible light. J Colloid Interface Sci 488:234–239

    Article  Google Scholar 

  34. Cui S, Shan G, Zhu L (2017) Solvothermal synthesis of I-deficient BiOI thin film with distinct photocatalytic activity and durability under simulated sunlight. Appl Catal B 219:249–258

    Article  Google Scholar 

  35. Choi H, Stathatos E, Dionysiou DD (2007) Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems. Desalination 202:199–206

    Article  Google Scholar 

  36. Zhang H, Quan X, Chen S, Zhao H (2006) Fabrication and characterization of silica/titania nanotubes composite membrane with photocatalytic capability. Environ Sci Technol 40:6104–6109

    Article  Google Scholar 

  37. Shen X, Zhang T, Xu P, Zhang L, Liu J, Chen Z (2017) Growth of C3N4 nanosheets on carbon-fiber cloth as flexible and macroscale filter-membrane-shaped photocatalyst for degrading the flowing wastewater. Appl Catal B 219:425–431

    Article  Google Scholar 

  38. Zhao J, Liao C, Liu J, Shen X, Tong H (2016) Development of mesoporous titanium dioxide hybrid poly(vinylidene fluoride) ultrafiltration membranes with photocatalytic properties. J Appl Polym Sci 133:43427–43437

    Google Scholar 

  39. Li Y, Sun J, Liu L, Yang F (2017) A composite cathode membrane with CoFe2O4-rGO/PVDF on carbon fiber cloth: synthesis and performance in a photocatalysis-assisted MFC-MBR system. Environ Sci Nano 4:335–345

    Article  Google Scholar 

  40. Marinho BA, Cristóvão RO, Djellabi R, Loureiro JM, Boaventura RAR, Vilar VJP (2017) Photocatalytic reduction of Cr(VI) over TiO2-coated cellulose acetate monolithic structures using solar light. Appl Catal B 203:18–30

    Article  Google Scholar 

  41. Yan W, Chen Q, Du M, Yang KM, Cai X, Meng X, Wang L (2018) Highly Transparent Poly(vinyl alcohol)(PVA)/TiO2 Nanocomposite Films with Remarkable Photocatalytic Performance and Recyclability. J Nanosci Nanotechnol 18:5660–5667

    Article  Google Scholar 

  42. Li J-H, Yan B-F, Shao X-S, Wang S-S, Tian H-Y, Zhang Q-Q (2015) Influence of Ag/TiO2 nanoparticle on the surface hydrophilicity and visible-light response activity of polyvinylidene fluoride membrane. Appl Surf Sci 324:82–89

    Article  Google Scholar 

  43. Meng X, Yao P, Xu Y, Meng H, Zhang X (2016) Fabrication of organic-inorganic hybrid membranes composed of poly(vinylidene fluoride) and silver cyanamide and their high photocatalytic activity under visible light irradiation. RSC Adv 6:61920–61926

    Article  Google Scholar 

  44. Paredes L, Murgolo S, Dzinun H, Othman MHD, Ismail AF, Carballa M, Mascolo G (2019) Application of immobilized TiO2 on PVDF dual layer hollow fibre membrane to improve the photocatalytic removal of pharmaceuticals in different water matrices. App Catal B 240:9–18

    Article  Google Scholar 

  45. Laohaprapanon S, Vanderlipe AD, Doma BT Jr, You S-J (2017) Self-cleaning and antifouling properties of plasma-grafted poly(vinylidene fluoride) membrane coated with ZnO for water treatment. J Taiwan Inst Chem Eng 70:15–22

    Article  Google Scholar 

  46. Li Y, Zhu L (2017) Evaluation of the antifouling and photocatalytic properties of novel poly(vinylidene fluoride) membranes with a reduced graphene oxide-Bi2WO6 active layer. J Appl Polym Sci 134:45426–45432

    Article  Google Scholar 

  47. Mounfield WP 3rd, Walton KS (2015) Effect of synthesis solvent on the breathing behavior of MIL-53(Al). J Colloid Interface Sci 447:33–39

    Article  Google Scholar 

  48. Zhang Y, Zhang N, Tang Z-R, Xu Y-J (2013) Identification of Bi2WO6 as a highly selective visible-light photocatalyst toward oxidation of glycerol to dihydroxyacetone in water. Chem Sci 4:1820–1824

    Article  Google Scholar 

  49. Georgiou SD (2011) Orthogonal designs for computer experiments. J Stat Plan Infer 141:1519–1525

    Article  Google Scholar 

  50. Franek L, Jiang X (2013) Orthogonal design of experiments for parameter learning in image segmentation. Signal Process 93:1694–1704

    Article  Google Scholar 

  51. Yang J, Wang X, Zhao X, Dai J, Mo S (2015) Synthesis of uniform Bi2WO6-reduced graphene oxide nanocomposites with significantly enhanced photocatalytic reduction activity. J Phys Chem C 119:3068–3078

    Article  Google Scholar 

  52. Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, Bataille T, Ferey G (2004) A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chemistry 10:1373–1382

    Article  Google Scholar 

  53. Kabir E, Khatun M, Nasrin L, Raihan MJ, Rahman M (2017) Pure β-phase formation in polyvinylidene fluoride (PVDF)-carbon nanotube composites. J Phys D Appl Phys 50:163002

    Article  Google Scholar 

  54. Li J-H, Li M-Z, Miao J, Wang J-B, Shao X-S, Zhang Q-Q (2012) Improved surface property of PVDF membrane with amphiphilic zwitterionic copolymer as membrane additive. Appl Surf Sci 258:6398–6405

    Article  Google Scholar 

  55. Tian J, Sang Y, Yu G, Jiang H, Mu X, Liu H (2013) A Bi2WO6-based hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation. Adv Mater 25:5075–5080

    Article  Google Scholar 

  56. Zhou Y, Zhang Y, Lin M, Long J, Zhang Z, Lin H, Wu CS, Wang X (2015) Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nat Commun 6:8340–8347

    Article  Google Scholar 

  57. Huang Y, Kang S, Yang Y, Qin H, Ni Z, Yang S, Li X (2016) Facile synthesis of Bi/Bi2WO6 nanocomposite with enhanced photocatalytic activity under visible light. Appl Catal B 196:89–99

    Article  Google Scholar 

  58. Chen Q, Yu Z, Pan Y, Zeng G, Shi H, Yang X, Li F, Yang S, He Y (2016) Enhancing the photocatalytic and antibacterial property of polyvinylidene fluoride membrane by blending Ag-TiO2 nanocomposites. J Mater Sci Mater El 28:3865–3874

    Article  Google Scholar 

  59. Wang T, Zhang F, Xiao G, Zhong S, Lu C (2015) Synthesis of Bi2WO6/Bi2O3 composite with enhanced photocatalytic activity by a facile one-step hydrothermal synthesis route. Photochem Photobiol 91:291–297

    Article  Google Scholar 

  60. Chang X, Wang Z, Quan S, Xu Y, Jiang Z, Shao L (2014) Exploring the synergetic effects of graphene oxide (GO) and polyvinylpyrrodione (PVP) on poly(vinylylidenefluoride) (PVDF) ultrafiltration membrane performance. Appl Surf Sci 316:537–548

    Article  Google Scholar 

  61. You SJ, Semblante GU, Lu SC, Damodar RA, Wei TC (2012) Evaluation of the antifouling and photocatalytic properties of poly(vinylidene fluoride) plasma-grafted poly(acrylic acid) membrane with self-assembled TiO2. J Hazard Mater 237–238:10–19

    Article  Google Scholar 

  62. Xia J, Li H, Luo Z, Xu H, Wang K, Yin S, Yan Y (2010) Self-assembly and enhanced optical absorption of Bi2WO6 nests via ionic liquid-assisted hydrothermal method. Mater Chem Phys 121:6–9

    Article  Google Scholar 

  63. Cao R, Tian N, Guo Y, Zhang T (2015) Novel Y doped Bi2WO6 photocatalyst: hydrothermal fabrication, characterization and enhanced visible-light-driven photocatalytic activity for rhodamine B degradation and photocurrent generation. Mater Charact 101:166–172

    Article  Google Scholar 

  64. Xu ZL, Yu LY, Han LF (2009) Polymer-nanoinorganic particles composite membranes: a brief overview. Front Chem Eng Chin 3:318–329

    Article  Google Scholar 

  65. Kang G-D, Cao Y-M (2014) Application and modification of poly(vinylidene fluoride) (PVDF) membranes-a review. J Membr Sci 463:145–165

    Article  Google Scholar 

  66. Yuan Z, Dan-Li X (2008) Porous PVDF/TPU blends asymmetric hollow fiber membranes prepared with the use of hydrophilic additive PVP (K30). Desalination 223:438–447

    Article  Google Scholar 

  67. Weng S, Chen B, Xie L, Zheng Z, Liu P (2013) Facile in situ synthesis of a Bi/BiOCl nanocomposite with high photocatalytic activity. J Mater Chem A 1:3068–3075

    Article  Google Scholar 

  68. Ngang HP, Ooi BS, Ahmad AL, Lai SO (2012) Preparation of PVDF-TiO2 mixed-matrix membrane and its evaluation on dye adsorption and UV-cleaning properties. Chem Eng J 197:359–367

    Article  Google Scholar 

  69. Bora LV, Mewada RK (2017) Visible/solar light active photocatalysts for organic effluent treatment: fundamentals, mechanisms and parametric review. Renewable Sustainable Energy Rev 76:1393–1421

    Article  Google Scholar 

  70. Li Y, Chen L, Wang Y, Zhu L (2016) Advanced nanostructured photocatalysts based on reduced graphene oxide-flower-like Bi2WO6 composites for an augmented simulated solar photoactivity activity. Mater Sci Eng, B 210:29–36

    Article  Google Scholar 

  71. Hapeshi E, Achilleos A, Vasquez MI, Michael C, Xekoukoulotakis NP, Mantzavinos D, Kassinos D (2010) Drugs degrading photocatalytically: kinetics and mechanisms of ofloxacin and atenolol removal on titania suspensions. Water Res 44:1737–1746

    Article  Google Scholar 

  72. Kaur A, Kansal SK (2016) Bi2WO6 nanocuboids: an efficient visible light active photocatalyst for the degradation of levofloxacin drug in aqueous phase. Chem Eng J 302:194–203

    Article  Google Scholar 

  73. Zhou L, Jin C, Yu Y, Chi F, Ran S, Lv Y (2016) Molten salt synthesis of Bi2WO6 powders with enhanced visible-light-induced photocatalytic activities. J Alloys Compd 680:301–308

    Article  Google Scholar 

  74. Arbeloa IL, Rohatgi-Mukherjee KK (1986) Solvent effect on photophysics of the molecular forms of rhodamine B. solvation models and spectroscopic parameters. Chem Phys Lett 128:474–479

    Article  Google Scholar 

  75. Issarapanacheewin S, Wetchakun K, Phanichphant S, Kangwansupamonkon W, Wetchakun N (2016) Photodegradation of organic dyes by CeO2/Bi2WO6 nanocomposite and its physicochemical properties investigation. Ceram Int 42:16007–16016

    Article  Google Scholar 

  76. Fu H, Pan C, Yao W, Zhu Y (2005) Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. J Phys Chem B 109:22432–22439

    Article  Google Scholar 

  77. Akpan UG, Hameed BH (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater 170:520–529

    Article  Google Scholar 

  78. Liu K, Gao Y, Liu J, Wen Y, Zhao Y, Zhang K, Yu G (2016) Photoreactivity of metal-organic frameworks in aqueous solutions: metal dependence of reactive oxygen species production. Environ Sci Technol 50:3634–3640

    Article  Google Scholar 

  79. Zhou Y, Meng X, Tong L, Zeng X, Chen X (2016) Template-free fabrication of Bi2WO6 hierarchical hollow microspheres with visible-light-driven photocatalytic activity. Energies 9:764–774

    Article  Google Scholar 

  80. Zhang C, Zhu Y (2005) Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts. Chem Mater 17:3537–3545

    Article  Google Scholar 

  81. Zhang X, Zhang L, Xie T, Wang D (2009) Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures. J Phys Chem C 113:7371–7378

    Article  Google Scholar 

Download references

Acknowledgements

This investigation was supported by the National Key Research and Development Program of China (no. 2016YFB0700504). The characterization of prepared samples was supported by the Analytical and Testing Center of Shanghai University, Shanghai, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longxing Hu.

Ethics declarations

Conflict of interests

All authors declare that they do not have conflicts to interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 808 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Zhang, Y., Lu, W. et al. Easily recyclable photocatalyst Bi2WO6/MOF/PVDF composite film for efficient degradation of aqueous refractory organic pollutants under visible-light irradiation. J Mater Sci 54, 6238–6257 (2019). https://doi.org/10.1007/s10853-018-03302-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-03302-w

Navigation