Skip to main content
Log in

A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present review, the recent progress in describing the intricacies of mechanical and thermal properties of all types of graphene- and modified graphene-based polymer nanocomposites has been comprehensively examined. The effectiveness of microscopy bouquet for the intrinsic characterization of graphene family and their composites was clearly demonstrated in this research. Furthermore, the utility of the dynamic mechanical analysis and thermo-gravimetric analysis employed for thermal characterization that has been reported by various researchers was exhaustively analyzed in this paper. This research primarily focused on the analyses of several good articles concerned with hybrid graphene composites and the synergetic effect of graphene with other nanofiller to assess its effect on the mechanical properties of its corresponding composites. Such systematic analysis of previous literatures imparted a direction to the researchers about the solution of improved interfacial properties as well as the enhanced dispersion into the vicinity of the matrix. This current research has suggested that the presence of the graphene filler even at very low loadings has shown considerable improvement in the overall mechanical properties of graphene. Further studies to optimize the value of the filler need to be addressed in order to gain complete understanding of the properties of graphene. The potential applications, current challenges, and future perspectives pertaining to these nanocomposites were elaborately discussed in the current study with regard to the multi-scale capabilities and promising developments of the graphene-family-based nanocomposites materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

Abbreviations

0D:

Zero-dimensional

1D:

One-dimensional

2D:

Two-dimensional

3D:

Three-dimensional

AFM:

Atomic force microscopy

CF:

Carbon fiber

GO:

Graphene oxide

CNT:

Carbon nanotube

PMMA:

Poly(methyl methacrylate)

EP:

Epoxy resin

GF:

Glass fiber

DGEBA:

Diglycidyl ether of bisphenol A

f-GNS:

Functionalized graphene nanosheet

PVA:

Poly(vinyl alcohol)

CRPFs:

Carbon fiber epoxy composites

PVDF:

Poly(vinylidene fluoride)

PI:

Polyimide

UTS:

Ultimate tensile strength

CFRPs:

Carbon fiber-reinforced polymer

RSF:

Regenerated silk fibroin

HDPE:

High-density polyethylene

PES:

Poly(ether sulfone)

NFrGO:

Non-covalent functionalized reduced graphene oxide

FG:

Functionalized graphene

DETDA:

Diethyl toluene diamine

CVD:

Chemical vapor deposition

PAA:

Poly(acrylic acid)

CA:

Cellulose acetate

CTE:

Coefficient of thermal expansion

TEM:

Transmission electron microscopy

rGO:

Reduced graphene oxide

MWCNT:

Multi-walled carbon nanotube

PDMS:

Poly-dimethylsiloxane

DSC:

Differential scanning calorimetry

SEM:

Scanning electron microscopy

RTM:

Resin transfer molding

WPU:

Waterborne polyurethane

FGO:

Functionalized graphene oxide

T g :

Glass transition temperature

GNPs:

Graphene nanoplatelets

f-GNPs:

Functionalized graphene nanoplatelets

DMA:

Dynamic mechanical analysis

PP:

Polypropylene

ILSS:

Interlaminar shear strength

IFSS:

Interfacial shear strength

PU:

Polyurethane

xGnPs:

Exfoliated graphite nanoplatelets

PGMA:

Poly(glycidyl methacrylate)

TGA:

Thermo-gravimetric analysis

References

  1. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Google Scholar 

  2. Gupta A, Sakthivel T, Seal S (2015) Recent development in 2D materials beyond graphene. Prog Mater Sci 73:44–126

    Google Scholar 

  3. CeNeR Rao, AeK Sood, KeS Subrahmanyam, Graphene Govindaraj A (2009) the new two-dimensional nanomaterial. Angew Chem Int Ed 48(42):7752–7777

    Google Scholar 

  4. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Google Scholar 

  5. Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145

    Google Scholar 

  6. Rahman R, Haque A (2013) Molecular modeling of crosslinked graphene–epoxy nanocomposites for characterization of elastic constants and interfacial properties. Compos B Eng 54:353–364

    Google Scholar 

  7. Nayebi P, Zaminpayma E (2016) A molecular dynamic simulation study of mechanical properties of graphene–polythiophene composite with Reax force field. Phys Lett A 380(4):628–633

    Google Scholar 

  8. King JA, Klimek DR, Miskioglu I, Odegard GM (2015) Mechanical properties of graphene nanoplatelet/epoxy composites. J Compos Mater 49(6):659–668

    Google Scholar 

  9. Akhavan O, Ghaderi E, Shahsavar M (2013) Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells. Carbon 59:200–211

    Google Scholar 

  10. Akhavan O, Ghaderi E (2013) Flash photo stimulation of human neural stem cells on graphene/TiO2 heterojunction for differentiation into neurons. Nanoscale 5(21):10316–10326

    Google Scholar 

  11. Akhavan O, Ghaderi E (2013) Differentiation of human neural stem cells into neural networks on graphene nanogrids. J Mater Chem B 1(45):6291–6301

    Google Scholar 

  12. Akhavan O, Ghaderi E, Abouei E, Hatamie S, Ghasemi E (2014) Accelerated differentiation of neural stem cells into neurons on ginseng-reduced graphene oxide sheets. Carbon 66:395–406

    Google Scholar 

  13. Akhavan O, Ghaderi E (2014) The use of graphene in the self-organized differentiation of human neural stem cells into neurons under pulsed laser stimulation. J Mater Chem B 2(34):5602–5611

    Google Scholar 

  14. Akhavan O, Ghaderi E, Shirazian SA, Rahighi R (2016) Rolled graphene oxide foams as three-dimensional scaffolds for growth of neural fibers using electrical stimulation of stem cells. Carbon 97:71–77

    Google Scholar 

  15. Akhavan O, Ghaderi E, Rahimi K (2012) Adverse effects of graphene incorporated in TiO2 photocatalyst on minuscule animals under solar light irradiation. J Mater Chem 22(43):23260–23266

    Google Scholar 

  16. Akhavan O, Ghaderi E, Aghayee S, Fereydooni Y, Talebi A (2012) The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. J Mater Chem 22(27):13773–13781

    Google Scholar 

  17. Akhavan O, Ghaderi E, Esfandiar A (2011) Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J Phys Chem B 115(19):6279–6288

    Google Scholar 

  18. Akhavan O, Ghaderi E (2012) Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 50(5):1853–1860

    Google Scholar 

  19. Moradi S, Akhavan O, Tayyebi A, Rahighi R, Mohammadzadeh M, Rad HS (2015) Magnetite/dextran-functionalized graphene oxide nanosheets for in vivo positive contrast magnetic resonance imaging. RSC Adv 5(59):47529–47537

    Google Scholar 

  20. Fazaeli Y, Akhavan O, Rahighi R, Aboudzadeh MR, Karimi E, Afarideh H (2014) In vivo SPECT imaging of tumors by 198,199 Au-labeled graphene oxide nanostructures. Mater Sci Eng, C 45:196–204

    Google Scholar 

  21. Akhavan O, Ghaderi E, Rahighi R (2012) Toward single-DNA electrochemical biosensing by graphene nanowalls. ACS Nano 6(4):2904–2916

    Google Scholar 

  22. Akhavan O, Ghaderi E, Rahighi R, Abdolahad M (2014) Spongy graphene electrode in electrochemical detection of leukemia at single-cell levels. Carbon 79:654–663

    Google Scholar 

  23. Akhavan O, Ghaderi E, Hashemi E, Rahighi R (2014) Ultra-sensitive detection of leukemia by graphene. Nanoscale 6(24):14810–14819

    Google Scholar 

  24. Liu Y, Xie B, Zhang Z, Zheng Q, Xu Z (2012) Mechanical properties of graphene papers. J Mech Phys Solids 60(4):591–605

    Google Scholar 

  25. Kordkheili SH, Moshrefzadeh-Sani H (2013) Mechanical properties of double-layered graphene sheets. Comput Mater Sci 69:335–343

    Google Scholar 

  26. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    Google Scholar 

  27. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Google Scholar 

  28. Pop E, Varshney V, Roy AK (2012) Thermal properties of graphene: Fundamentals and applications. MRS Bull 37(12):1273–1281

    Google Scholar 

  29. Schöche S, Hong N, Khorasaninejad M, Ambrosio A, Orabona E, Maddalena P et al (2017) Optical properties of graphene oxide and reduced graphene oxide determined by spectroscopic ellipsometry. Appl Surf Sci 421:778–782

    Google Scholar 

  30. Kim K-W, Kim JH, Cho S, Shin K, Kim SH (2017) Scalable high-performance graphene paper with enhanced electrical and mechanical properties. Thin Solid Films 632:50–54

    Google Scholar 

  31. Mohan VB, Jayaraman K, Stamm M, Bhattacharyya D (2016) Physical and chemical mechanisms affecting electrical conductivity in reduced graphene oxide films. Thin Solid Films 616:172–182

    Google Scholar 

  32. Goenka S, Sant V, Sant S (2014) Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release 173:75–88

    Google Scholar 

  33. Jang BZ, Zhamu A (2008) Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. J Mater Sci 43:5092–5101. https://doi.org/10.1007/s10853-008-2755-2

    Google Scholar 

  34. Schadler L, Giannaris S, Ajayan P (1998) Load transfer in carbon nanotube epoxy composites. Appl Phys Lett 73(26):3842–3844

    Google Scholar 

  35. Naveh N, Shepelev O, Kenig S (2017) Enhancement of mechanical and electrical properties of continuous-fiber-reinforced epoxy composites with stacked graphene. Beilstein J Nanotechnol 8:1909–1918

    Google Scholar 

  36. Subha S, Singh D, Venkatanarayanan P (2018) Thermal, ablation and mechanical properties of carbon–phenolic composites reinforced with zirconia coated graphene nanoplatelets. Mater Res Express 5(1):014008. https://doi.org/10.1088/2053-1591/aaa3b8

    Google Scholar 

  37. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52(1):5–25

    Google Scholar 

  38. Sadasivuni KK, Ponnamma D, Thomas S, Grohens Y (2014) Evolution from graphite to graphene elastomer composites. Prog Polym Sci 39(4):749–780

    Google Scholar 

  39. Punetha VD, Rana S, Yoo HJ, Chaurasia A, McLeskey JT Jr, Ramasamy MS et al (2017) Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene. Prog Polym Sci 67:1–47

    Google Scholar 

  40. Tonelli FM, Goulart VA, Gomes KN, Ladeira MS, Santos AK, Lorençon E et al (2015) Graphene-based nanomaterials: biological and medical applications and toxicity. Nanomedicine 10(15):2423–2450

    Google Scholar 

  41. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Google Scholar 

  42. Min K, Aluru N (2011) Mechanical properties of graphene under shear deformation. Appl Phys Lett 98(1):013113. https://doi.org/10.1063/1.3534787

    Google Scholar 

  43. Zandiatashbar A, Lee G-H, An SJ, Lee S, Mathew N, Terrones M et al (2014) Effect of defects on the intrinsic strength and stiffness of graphene. Nat Commun 5:3186. https://doi.org/10.1038/ncomms4186

    Google Scholar 

  44. Grantab R, Shenoy VB, Ruoff RS (2010) Anomalous strength characteristics of tilt grain boundaries in graphene. Science 330(6006):946–948

    Google Scholar 

  45. Wei Y, Wu J, Yin H, Shi X, Yang R, Dresselhaus M (2012) The nature of strength enhancement and weakening by pentagon–heptagon defects in graphene. Nat Mater 11(9):759–763

    Google Scholar 

  46. Rasool HI, Ophus C, Klug WS, Zettl A, Gimzewski JK (2013) Measurement of the intrinsic strength of crystalline and polycrystalline graphene. Nat Commun 4:2811. https://doi.org/10.1038/ncomms3811

    Google Scholar 

  47. Ruiz-Vargas CS, Zhuang HL, Huang PY, Van Der Zande AM, Garg S, McEuen PL et al (2011) Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano Lett 11(6):2259–2263

    Google Scholar 

  48. Song Z, Artyukhov VI, Yakobson BI, Xu Z (2013) Pseudo Hall–Petch strength reduction in polycrystalline graphene. Nano Lett 13(4):1829–1833

    Google Scholar 

  49. Service RF (2009) Materials science: carbon sheets an atom thick give rise to graphene dreams. Science 324(5929):875–877

    Google Scholar 

  50. Pan Y, Sahoo NG, Li L (2012) The application of graphene oxide in drug delivery. Expert Opin Drug Deliv 9(11):1365–1376

    Google Scholar 

  51. Suk JW, Piner RD, An J, Ruoff RS (2010) Mechanical properties of monolayer graphene oxide. ACS Nano 4(11):6557–6564

    Google Scholar 

  52. Gong T, Lam DV, Liu R, Won S, Hwangbo Y, Kwon S et al (2015) Thickness dependence of the mechanical properties of free-standing graphene oxide papers. Adv Funct Mater 25(24):3756–3763

    Google Scholar 

  53. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GH, Evmenenko G et al (2007) Preparation and characterization of graphene oxide paper. Nature 448(7152):457

    Google Scholar 

  54. Kang S-H, Fang T-H, Hong Z-H, Chuang C-H (2013) Mechanical properties of free-standing graphene oxide. Diam Relat Mater 38:73–78

    Google Scholar 

  55. Park S, Lee K-S, Bozoklu G, Cai W, Nguyen ST, Ruoff RS (2008) Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2(3):572–578

    Google Scholar 

  56. Lee W, Lee JU, Jung BM, Byun J-H, Yi J-W, Lee S-B et al (2013) Simultaneous enhancement of mechanical, electrical and thermal properties of graphene oxide paper by embedding dopamine. Carbon 65:296–304

    Google Scholar 

  57. Lee JU, Lee W, Yi JW, Yoon SS, Lee SB, Jung BM et al (2013) Preparation of highly stacked graphene papers via site-selective functionalization of graphene oxide. J Mater Chem A 1(41):12893–12899

    Google Scholar 

  58. Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534

    Google Scholar 

  59. Faugeras C, Faugeras B, Orlita M, Potemski M, Nair RR, Geim A (2010) Thermal conductivity of graphene in corbino membrane geometry. ACS Nano 4(4):1889–1892

    Google Scholar 

  60. Cai W, Moore AL, Zhu Y, Li X, Chen S, Shi L et al (2010) Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett 10(5):1645–1651

    Google Scholar 

  61. TPRC, Touloukian YS (1977) Thermophysical properties of matter: the TPRC data series; a comprehensive compilation of data by the Thermophysical Properties Research Center (TPRC), Purdue University, Thermal Expansion. Metallic Elements and Alloys: IFI

  62. Kim P, Shi L, Majumdar A, McEuen P (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87(21):215502. https://doi.org/10.1103/PhysRevLett.87.215502

    Google Scholar 

  63. Pop E, Mann D, Wang Q, Goodson K, Dai H (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6(1):96–100

    Google Scholar 

  64. Jang W, Chen Z, Bao W, Lau CN, Dames C (2010) Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite. Nano Lett 10(10):3909–3913

    Google Scholar 

  65. Shaina P, George L, Yadav V, Jaiswal M (2016) Estimating the thermal expansion coefficient of graphene: the role of graphene–substrate interactions. J Phys: Condens Matter 28(8):085301. https://doi.org/10.1088/0953-8984/28/8/085301

    Google Scholar 

  66. Storch IR, De Alba R, Adiga VP, Abhilash T, Barton RA, Craighead HG et al (2018) Young’s modulus and thermal expansion of tensioned graphene membranes. Phys Rev B 98(8):085408. https://doi.org/10.1103/PhysRevB.98.085408

    Google Scholar 

  67. Li J-L, Kudin KN, McAllister MJ, Prud’homme RK, Aksay IA, Car R (2006) Oxygen-driven unzipping of graphitic materials. Phys Rev Lett 96(17):176101. https://doi.org/10.1103/PhysRevLett.96.176101

    Google Scholar 

  68. Gómez-Navarro C, Burghard M, Kern K (2008) Elastic properties of chemically derived single graphene sheets. Nano Lett 8(7):2045–2049

    Google Scholar 

  69. Lee C, Wei X, Li Q, Carpick R, Kysar JW, Hone J (2009) Elastic and frictional properties of graphene. Phys Status Solidi (b). 246(11–12):2562–2567

    Google Scholar 

  70. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T et al (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308

    Google Scholar 

  71. Medina H, Lin YC, Obergfell D, Chiu PW (2011) Tuning of charge densities in graphene by molecule doping. Adv Funct Mater 21(14):2687–2692

    Google Scholar 

  72. Gómez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M et al (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7(11):3499–3503

    Google Scholar 

  73. Wang S, Ang PK, Wang Z, Tang ALL, Thong JT, Loh KP (2009) High mobility, printable, and solution-processed graphene electronics. Nano Lett 10(1):92–98

    Google Scholar 

  74. Mahanta NK, Abramson AR (2012) Thermal conductivity of graphene and graphene oxide nanoplatelets. In: 2012 13th IEEE intersociety conference on thermal and thermomechanical phenomena in electronic systems (ITherm). IEEE, pp 1–6

  75. Lee J-U, Yoon D, Kim H, Lee SW, Cheong H (2011) Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy. Phys Rev B 83(8):081419

    Google Scholar 

  76. Gao W, Alemany LB, Ci L, Ajayan PM (2009) New insights into the structure and reduction of graphite oxide. Nat Chem 1(5):403–408

    Google Scholar 

  77. Castro EV, Novoselov K, Morozov S, Peres N, Dos Santos JL, Nilsson J et al (2007) Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys Rev Lett 99(21):216802. https://doi.org/10.1103/PhysRevLett.99.216802

    Google Scholar 

  78. Seresht RJ, Jahanshahi M, Rashidi A, Ghoreyshi AA (2013) Synthesize and characterization of graphene nanosheets with high surface area and nano-porous structure. Appl Surf Sci 276:672–681

    Google Scholar 

  79. McAllister MJ, Li J-L, Adamson DH, Schniepp HC, Abdala AA, Liu J et al (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19(18):4396–4404

    Google Scholar 

  80. Asadollahi-yazdi H, Shariati M, Imam A, Ghatee M (2017) Investigating the mechanical properties of layered graphene/polyoxymethylene nanocomposites prepared by the spray method. J Compos Mater 51(21):3053–3064

    Google Scholar 

  81. Ma L, Wang G, Dai J (2017) Preparation and properties of graphene oxide/polyimide composites by in situ polymerization and thermal imidization process. High Perform Polym 29(2):187–196

    Google Scholar 

  82. Bortz DR, Heras EG, Martin-Gullon I (2011) Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites. Macromolecules 45(1):238–245

    Google Scholar 

  83. Kashyap S, Pratihar SK, Behera SK (2016) Strong and ductile graphene oxide reinforced PVA nanocomposites. J Alloys Compd 684:254–260

    Google Scholar 

  84. Mo S, Peng L, Yuan C, Zhao C, Tang W, Ma C et al (2015) Enhanced properties of poly (vinyl alcohol) composite films with functionalized graphene. RSC Adv 5(118):97738–97745

    Google Scholar 

  85. Uddin ME, Layek RK, Kim HY, Kim NH, Hui D, Lee JH (2016) Preparation and enhanced mechanical properties of non-covalently-functionalized graphene oxide/cellulose acetate nanocomposites. Compos Part B Eng 90:223–231

    Google Scholar 

  86. Sainsbury T, Gnaniah S, Spencer SJ, Mignuzzi S, Belsey NA, Paton KR et al (2017) Extreme mechanical reinforcement in graphene oxide based thin-film nanocomposites via covalently tailored nanofiller matrix compatibilization. Carbon 114:367–376

    Google Scholar 

  87. Vlassiouk I, Polizos G, Cooper R, Ivanov I, Keum JK, Paulauskas F et al (2015) Strong and electrically conductive graphene-based composite fibers and laminates. ACS Appl Mater Interfaces 7(20):10702–10709

    Google Scholar 

  88. Zhang X, Fan X, Yan C, Li H, Zhu Y, Li X et al (2012) Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide. ACS Appl Mater Interfaces 4(3):1543–1552

    Google Scholar 

  89. Alexopoulos ND, Paragkamian Z, Poulin P, Kourkoulis SK (2017) Fracture related mechanical properties of low and high graphene reinforcement of epoxy nanocomposites. Compos Sci Technol 150:194–204

    Google Scholar 

  90. Huskić M, Bolka S, Vesel A, Mozetič M, Anžlovar A, Vizintin A et al (2018) One-step surface modification of graphene oxide and influence of its particle size on the properties of graphene oxide/epoxy resin nanocomposites. Eur Polym J 101:211–217

    Google Scholar 

  91. Chhetri S, Adak NC, Samanta P, Murmu NC, Hui D, Kuila T et al (2018) Investigation of the mechanical and thermal properties of l-glutathione modified graphene/epoxy composites. Compos Part B Eng 143:105–112

    Google Scholar 

  92. Goumri M, Poilâne C, Ruterana P, Doudou BB, Wéry J, Bakour A et al (2017) Synthesis and characterization of nanocomposites films with graphene oxide and reduced graphene oxide nanosheets. Chin J Phys 55(2):412–422

    Google Scholar 

  93. Lin Y-T, Don T-M, Wong C-J, Meng F-C, Lin Y-J, Lee S-Y et al (2018) Improvement of mechanical properties and anticorrosion performance of epoxy coatings by the introduction of polyaniline/graphene composite. Surf Coat Technol. https://doi.org/10.1016/j.surfcoat.2018.01.050

    Google Scholar 

  94. Chen L, Chai S, Liu K, Ning N, Gao J, Liu Q et al (2012) Enhanced epoxy/silica composites mechanical properties by introducing graphene oxide to the interface. ACS Appl Mater Interfaces 4(8):4398–4404

    Google Scholar 

  95. Li H, Xie X-M (2018) Polyolefin-functionalized graphene oxide and its GO/HDPE nanocomposite with excellent mechanical properties. Chin Chem Lett 29(1):161–165

    Google Scholar 

  96. Liu Q, Zhou X, Fan X, Zhu C, Yao X, Liu Z (2012) Mechanical and thermal properties of epoxy resin nanocomposites reinforced with graphene oxide. Polym Plast Technol Eng 51(3):251–256

    Google Scholar 

  97. Ni Y, Chen L, Teng K, Shi J, Qian X, Xu Z et al (2015) Superior mechanical properties of epoxy composites reinforced by 3D interconnected graphene skeleton. ACS Appl Mater Interfaces 7(21):11583–11591

    Google Scholar 

  98. Pizzutto CE, Suave J, Bertholdi J, Pezzin SH, Coelho LAF, Amico SC (2011) Study of epoxy/CNT nanocomposites prepared via dispersion in the hardener. Mater Res 14(2):256–263

    Google Scholar 

  99. Wei J, Atif R, Vo T, Inam F (2015) Graphene nanoplatelets in epoxy system: dispersion, reaggregation, and mechanical properties of nanocomposites. J Nanomater 16(1):374

    Google Scholar 

  100. Li Z, Young RJ, Wilson NR, Kinloch IA, Vallés C, Li Z (2016) Effect of the orientation of graphene-based nanoplatelets upon the Young’s modulus of nanocomposites. Compos Sci Technol 123:125–133

    Google Scholar 

  101. Li W, Shang T, Yang W, Yang H, Lin S, Jia X et al (2016) Effectively exerting the reinforcement of dopamine reduced graphene oxide on epoxy-based composites via strengthened interfacial bonding. ACS Appl Mater Interfaces 8(20):13037–13050

    Google Scholar 

  102. Wu S, Ladani RB, Zhang J, Bafekrpour E, Ghorbani K, Mouritz AP et al (2015) Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites. Carbon 94:607–618

    Google Scholar 

  103. Atif R, Shyha I, Inam F (2017) Modeling and experimentation of multi-layered nanostructured graphene-epoxy nanocomposites for enhanced thermal and mechanical properties. J Compos Mater 51(2):209–220

    Google Scholar 

  104. Berhanuddin N, Zaman I, Rozlan S, Karim M, Manshoor B, Khalid A et al. (2017) Enhancement of mechanical properties of epoxy/graphene nanocomposite. J Phys Conf Ser IOP Publ 012036

  105. Bora C, Bharali P, Baglari S, Dolui SK, Konwar BK (2013) Strong and conductive reduced graphene oxide/polyester resin composite films with improved mechanical strength, thermal stability and its antibacterial activity. Compos Sci Technol 87:1–7

    Google Scholar 

  106. Li Y, Zhang H, Porwal H, Huang Z, Bilotti E, Peijs T (2017) Mechanical, electrical and thermal properties of in situ exfoliated graphene/epoxy nanocomposites. Compos Part A Appl Sci Manuf 95:229–236

    Google Scholar 

  107. Quiles-Diaz S, Enrique-Jimenez P, Papageorgiou D, Ania F, Flores A, Kinloch I et al (2017) Influence of the chemical functionalization of graphene on the properties of polypropylene-based nanocomposites. Compos Part A Appl Sci Manuf 100:31–39

    Google Scholar 

  108. Wang J, Shi Z, Ge Y, Wang Y, Fan J, Yin J (2012) Solvent exfoliated graphene for reinforcement of PMMA composites prepared by in situ polymerization. Mater Chem Phys 136(1):43–50

    Google Scholar 

  109. Tian M, Qu L, Zhang X, Zhang K, Zhu S, Guo X et al (2014) Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers. Carbohydr Polym 111:456–462

    Google Scholar 

  110. Layek RK, Samanta S, Nandi AK (2012) The physical properties of sulfonated graphene/poly (vinyl alcohol) composites. Carbon 50(3):815–827

    Google Scholar 

  111. Berhanuddin C, Idani N, Rozlan M, Azmirul S, Zaman I, Mustapa MS et al. (2017) Effect of thermal expansion and sonication on mechanical properties and adhesive toughness measurement of polymer/graphene composite. Mater Sci Forum Trans Tech Publ, pp 14–8

  112. Huang C-L, Lou C-W, Liu C-F, Huang C-H, Song X-M, Lin J-H (2015) Polypropylene/graphene and polypropylene/carbon fiber conductive composites: mechanical, crystallization and electromagnetic properties. Appl Sci 5(4):1196–1210

    Google Scholar 

  113. Moosa AA, Kubba F, Raad M, Ahmad Ramazani SA (2016) Mechanical and thermal properties of graphene nanoplates and functionalized carbon-nanotubes hybrid epoxy nanocomposites. Am J Mater Sci 6(5):125–134

    Google Scholar 

  114. Yadav SK, Cho JW (2013) Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites. Appl Surf Sci 266:360–367

    Google Scholar 

  115. Gao Y, Picot OT, Bilotti E, Peijs T (2017) Influence of filler size on the properties of poly (lactic acid)(PLA)/graphene nanoplatelet (GNP) nanocomposites. Eur Polym J 86:117–131

    Google Scholar 

  116. Yang Z, McElrath K, Bahr J, D’Souza NA (2012) Effect of matrix glass transition on reinforcement efficiency of epoxy-matrix composites with single walled carbon nanotubes, multi-walled carbon nanotubes, carbon nanofibers and graphite. Compos Part B Eng 43(4):2079–2086

    Google Scholar 

  117. Zakaria MR, Kudus MHA, Akil HM, Thirmizir MZM (2017) Comparative study of graphene nanoparticle and multiwall carbon nanotube filled epoxy nanocomposites based on mechanical, thermal and dielectric properties. Compos Part B Eng 119:57–66

    Google Scholar 

  118. Yao H, Hawkins SA, Sue H-J (2017) Preparation of epoxy nanocomposites containing well-dispersed graphene nanosheets. Compos Sci Technol 146:161–168

    Google Scholar 

  119. Wang X, Xing W, Song L, Yang H, Hu Y, Yeoh GH (2012) Fabrication and characterization of graphene-reinforced waterborne polyurethane nanocomposite coatings by the sol–gel method. Surf Coat Technol 206(23):4778–4784

    Google Scholar 

  120. Wang J, Wang X, Xu C, Zhang M, Shang X (2011) Preparation of graphene/poly (vinyl alcohol) nanocomposites with enhanced mechanical properties and water resistance. Polym Int 60(5):816–822

    Google Scholar 

  121. Abdullah SI, Ansari M (2015) Mechanical properties of graphene oxide (GO)/epoxy composites. HBRC J 11(2):151–156

    Google Scholar 

  122. Galpaya D, Wang M, George G, Motta N, Waclawik E, Yan C (2014) Preparation of graphene oxide/epoxy nanocomposites with significantly improved mechanical properties. J Appl Phys 116(5):053518

    Google Scholar 

  123. Dixon D, Lemonine P, Hamilton J, Lubarsky G, Archer E (2015) Graphene oxide–polyamide 6 nanocomposites produced via in situ polymerization. J Thermoplast Compos Mater 28(3):372–389

    Google Scholar 

  124. Deshmukh K, Joshi GM (2014) Thermo-mechanical properties of poly (vinyl chloride)/graphene oxide as high performance nanocomposites. Polym Test 34:211–219

    Google Scholar 

  125. Kang H, Zuo K, Wang Z, Zhang L, Liu L, Guo B (2014) Using a green method to develop graphene oxide/elastomers nanocomposites with combination of high barrier and mechanical performance. Compos Sci Technol 92:1–8

    Google Scholar 

  126. Li W, Li H, Yang X, Feng W, Huang H (2017) Preparation and properties of novel sulfonic graphene oxide–epoxy resin nanocomposites by resin transfer molding process. J Compos Mater 51(9):1197–1208

    Google Scholar 

  127. Zhang Y, Mark JE, Zhu Y, Ruoff RS, Schaefer DW (2014) Mechanical properties of polybutadiene reinforced with octadecylamine modified graphene oxide. Polymer 55(21):5389–5395

    Google Scholar 

  128. Qian Y, Lan Y, Xu J, Ye F, Dai S (2014) Fabrication of polyimide-based nanocomposites containing functionalized graphene oxide nanosheets by in situ polymerization and their properties. Appl Surf Sci 314:991–999

    Google Scholar 

  129. Potts JR, Lee SH, Alam TM, An J, Stoller MD, Piner RD et al (2011) Thermomechanical properties of chemically modified graphene/poly (methyl methacrylate) composites made by in situ polymerization. Carbon 49(8):2615–2623

    Google Scholar 

  130. Zhao X, Li Y, Wang J, Ouyang Z, Li J, Wei G et al (2014) Interactive oxidation–reduction reaction for the in situ synthesis of graphene–phenol formaldehyde composites with enhanced properties. ACS Appl Mater Interfaces 6(6):4254–4263

    Google Scholar 

  131. Yousefi N, Gudarzi MM, Zheng Q, Lin X, Shen X, Jia J et al (2013) Highly aligned, ultralarge-size reduced graphene oxide/polyurethane nanocomposites: mechanical properties and moisture permeability. Compos Part A Appl Sci Manuf 49:42–50

    Google Scholar 

  132. Chen L, Li W, Liu Y, Leng J (2016) Nanocomposites of epoxy-based shape memory polymer and thermally reduced graphite oxide: mechanical, thermal and shape memory characterizations. Compos Part B Eng 91:75–82

    Google Scholar 

  133. Olowojoba GB, Eslava S, Gutierrez ES, Kinloch AJ, Mattevi C, Rocha VG et al (2016) In situ thermally reduced graphene oxide/epoxy composites: thermal and mechanical properties. Appl Nanosci 6(7):1015–1022

    Google Scholar 

  134. Yadav A, Kumar A, Singh PK, Sharma K (2018) Glass transition temperature of functionalized graphene epoxy composites using molecular dynamics simulation. Integr Ferroelectr 186(1):106–114

    Google Scholar 

  135. Ribeiro H, da Silva WM, Neves JC, Calado HDR, Paniago R, Seara LM et al (2015) Multifunctional nanocomposites based on tetraethylenepentamine-modified graphene oxide/epoxy. Polym Test 43:182–192

    Google Scholar 

  136. Li P, Zheng Y, Li M, Shi T, Li D, Zhang A (2016) Enhanced toughness and glass transition temperature of epoxy nanocomposites filled with solvent-free liquid-like nanocrystal-functionalized graphene oxide. Mater Des 89:653–659

    Google Scholar 

  137. Ferreira F, Brito F, Franceschi W, Simonetti E, Cividanes L, Chipara M et al (2018) Functionalized graphene oxide as reinforcement in epoxy based nanocomposites. Surf Interfaces 10:100–109

    Google Scholar 

  138. Pour ZS, Ghaemy M (2016) Polymer grafted graphene oxide: for improved dispersion in epoxy resin and enhancement of mechanical properties of nanocomposite. Compos Sci Technol 136:145–157

    Google Scholar 

  139. Zaman I, Phan TT, Kuan H-C, Meng Q, La LTB, Luong L et al (2011) Epoxy/graphene platelets nanocomposites with two levels of interface strength. Polymer 52(7):1603–1611

    Google Scholar 

  140. Song P, Cao Z, Cai Y, Zhao L, Fang Z, Fu S (2011) Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer 52(18):4001–4010

    Google Scholar 

  141. Ramanathan T, Abdala A, Stankovich S, Dikin D, Herrera-Alonso M, Piner R et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327

    Google Scholar 

  142. Layek RK, Samanta S, Chatterjee DP, Nandi AK (2010) Physical and mechanical properties of poly (methyl methacrylate)-functionalized graphene/poly (vinylidine fluoride) nanocomposites: piezoelectric β polymorph formation. Polymer 51(24):5846–5856

    Google Scholar 

  143. Naebe M, Wang J, Amini A, Khayyam H, Hameed N, Li LH et al (2014) Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites. Sci Rep 4:4375

    Google Scholar 

  144. Zhou T, Wang X, Cheng P, Wang T, Xiong D (2013) Improving the thermal conductivity of epoxy resin by the addition of a mixture of graphite nanoplatelets and silicon carbide microparticles. Express Polym Lett 7(7):528–594

    Google Scholar 

  145. Ganguli S, Roy AK, Anderson DP (2008) Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon 46(5):806–817

    Google Scholar 

  146. Pollack GL (1969) Kapitza resistance. Rev Mod Phys 41(1):48

    Google Scholar 

  147. Martin-Gallego M, Verdejo R, Khayet M, de Zarate JMO, Essalhi M, Lopez-Manchado MA (2011) Thermal conductivity of carbon nanotubes and graphene in epoxy nanofluids and nanocomposites. Nanoscale Res Lett 6(1):610

    Google Scholar 

  148. Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y et al (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85

    Google Scholar 

  149. Kostagiannakopoulou C, Fiamegkou E, Sotiriadis G, Kostopoulos V (2016) Thermal conductivity of carbon nanoreinforced epoxy composites. J Nanomater

  150. Xiao Y, Wang W, Chen X, Lin T, Zhang Y, Yang J et al (2016) Hybrid network structure and thermal conductive properties in poly (vinylidene fluoride) composites based on carbon nanotubes and graphene nanoplatelets. Compos Part A Appl Sci Manuf 90:614–625

    Google Scholar 

  151. Gu J, Yang X, Lv Z, Li N, Liang C, Zhang Q (2016) Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity. Int J Heat Mass Transf 92:15–22

    Google Scholar 

  152. Teng C-C, Ma C-CM, Lu C-H, Yang S-Y, Lee S-H, Hsiao M-C et al (2011) Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 49(15):5107–5116

    Google Scholar 

  153. Kim J, Yim B, Kim J, Kim J (2012) The effects of functionalized graphene nanosheets on the thermal and mechanical properties of epoxy composites for anisotropic conductive adhesives (ACAs). Microelectron Reliab 52(3):595–602

    Google Scholar 

  154. Shan X, Liu Y, Wu Z, Liu H, Zhang Z, Huang R, et al. Preparation and property study of graphene oxide reinforced epoxy resin insulation nanocomposites with high heat conductivity. IOP Conference Series: Materials Science and Engineering: IOP Publishing; 2017. p 012151

  155. Aradhana R, Mohanty S, Nayak SK (2018) Comparison of mechanical, electrical and thermal properties in graphene oxide and reduced graphene oxide filled epoxy nanocomposite adhesives. Polymer 141:109–123

    Google Scholar 

  156. Zhao Y-H, Zhang Y-F, Wu Z-K, Bai S-L (2016) Synergic enhancement of thermal properties of polymer composites by graphene foam and carbon black. Compos Part B: Eng 84:52–58

    Google Scholar 

  157. Zhang Y-F, Ren Y-J, Bai S-L (2018) Vertically aligned graphene film/epoxy composites as heat dissipating materials. Int J Heat Mass Transf 118:510–517

    Google Scholar 

  158. Shi Z, Li X-F, Bai H, Xu W-W, Yang S-Y, Lu Y et al (2016) Influence of microstructural features on thermal expansion coefficient in graphene/epoxy composites. Heliyon 2(3):e00094

    Google Scholar 

  159. Chang J-H (2017) Polyimide nanocomposites with functionalized graphene sheets: thermal property, morphology, gas permeation, and electroconductivity. J Thermoplast Compos Mater 31:837–861

    Google Scholar 

  160. Wang S, Tambraparni M, Qiu J, Tipton J, Dean D (2009) Thermal expansion of graphene composites. Macromolecules 42(14):5251–5255

    Google Scholar 

  161. Kim S, Do I, Drzal LT (2010) Thermal stability and dynamic mechanical behavior of exfoliated graphite nanoplatelets-LLDPE nanocomposites. Polym Compos 31(5):755–761

    Google Scholar 

  162. Wu H, Drzal LT (2014) Effect of graphene nanoplatelets on coefficient of thermal expansion of polyetherimide composite. Mater Chem Phys 146(1–2):26–36

    Google Scholar 

  163. Cao Y, Liang M, Liu Z, Wu Y, Xiong X, Li C et al (2016) Enhanced thermal conductivity for poly (vinylidene fluoride) composites with nano-carbon fillers. Rsc Adv 6(72):68357–68362

    Google Scholar 

  164. Li Q, Guo Y, Li W, Qiu S, Zhu C, Wei X et al (2014) Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite. Chem Mater 26(15):4459–4465

    Google Scholar 

  165. Yu A, Ramesh P, Itkis ME, Bekyarova E, Haddon RC (2007) Graphite nanoplatelet − epoxy composite thermal interface materials. J Phys Chem C 111(21):7565–7569

    Google Scholar 

  166. Yavari F, Fard HR, Pashayi K, Rafiee MA, Zamiri A, Yu Z et al (2011) Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives. J Phys Chem C 115(17):8753–8758

    Google Scholar 

  167. Shi J-N, Ger M-D, Liu Y-M, Fan Y-C, Wen N-T, Lin C-K et al (2013) Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives. Carbon 51:365–372

    Google Scholar 

  168. Debelak B, Lafdi K (2007) Use of exfoliated graphite filler to enhance polymer physical properties. Carbon 45(9):1727–1734

    Google Scholar 

  169. Liem H, Choy H (2013) Superior thermal conductivity of polymer nanocomposites by using graphene and boron nitride as fillers. Solid State Commun 163:41–45

    Google Scholar 

  170. Morimune S, Nishino T, Goto T (2012) Poly (vinyl alcohol)/graphene oxide nanocomposites prepared by a simple eco-process. Polym J 44(10):1056

    Google Scholar 

  171. Menbari S, Ashori A, Rahmani H, Bahrami R (2016) Viscoelastic response and interlaminar delamination resistance of epoxy/glass fiber/functionalized graphene oxide multi-scale composites. Polym Test 54:186–195

    Google Scholar 

  172. Zeng X, Yang J, Yuan W (2012) Preparation of a poly (methyl methacrylate)-reduced graphene oxide composite with enhanced properties by a solution blending method. Eur Polym J 48(10):1674–1682

    Google Scholar 

  173. Tang L-C, Wan Y-J, Yan D, Pei Y-B, Zhao L, Li Y-B et al (2013) The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27

    Google Scholar 

  174. Han X, Zhao Y, J-m Sun, Li Y, J-d Zhang, Hao Y (2017) Effect of graphene oxide addition on the interlaminar shear property of carbon fiber-reinforced epoxy composites. New Carbon Materials 32(1):48–55

    Google Scholar 

  175. Hallad SA, Banapurmath NR, Hunashyal AM, Shettar AS, Ayachit NH, Mruthunjaya A et al (2017) Experimental investigation for graphene and carbon fibre in polymer-based matrix for structural applications. J Appl Res Technol 15(3):297–302

    Google Scholar 

  176. Hu X, Li J, Bai Y (2017) Fabrication of high strength graphene/regenerated silk fibroin composite fibers by wet spinning. Mater Lett 194:224–226

    Google Scholar 

  177. Mahmood H, Vanzetti L, Bersani M, Pegoretti A (2018) Mechanical properties and strain monitoring of glass-epoxy composites with graphene-coated fibers. Compos Part A Appl Sci Manuf 107:112–123

    Google Scholar 

  178. Hua Y, Li F, Liu Y, Huang G-W, Xiao H-M, Li Y-Q et al (2017) Positive synergistic effect of graphene oxide/carbon nanotube hybrid coating on glass fiber/epoxy interfacial normal bond strength. Compos Sci Technol 149:294–304

    Google Scholar 

  179. Pathak AK, Borah M, Gupta A, Yokozeki T, Dhakate SR (2016) Improved mechanical properties of carbon fiber/graphene oxide-epoxy hybrid composites. Compos Sci Technol 135:28–38

    Google Scholar 

  180. Idumah CI, Hassan A (2016) Characterization and preparation of conductive exfoliated graphene nanoplatelets kenaf fibre hybrid polypropylene composites. Synth Met 212:91–104

    Google Scholar 

  181. Papageorgiou DG, Kinloch IA, Young RJ (2016) Hybrid multifunctional graphene/glass-fibre polypropylene composites. Compos Sci Technol 137:44–51

    Google Scholar 

  182. Kwon YJ, Kim Y, Jeon H, Cho S, Lee W, Lee JU (2017) Graphene/carbon nanotube hybrid as a multi-functional interfacial reinforcement for carbon fiber-reinforced composites. Compos B Eng 122:23–30

    Google Scholar 

  183. He R, Chang Q, Huang X, Bo J (2018) Improved mechanical properties of carbon fiber reinforced PTFE composites by growing graphene oxide on carbon fiber surface. Compos Interfaces 25:1–10

    Google Scholar 

  184. Lee W, Lee JU, Cha H-J, Byun J-H (2013) Partially reduced graphene oxide as a multi-functional sizing agent for carbon fiber composites by electrophoretic deposition. RSC Adv 3(48):25609–25613

    Google Scholar 

  185. Kostagiannakopoulou C, Tsilimigkra X, Sotiriadis G, Kostopoulos V (2017) Synergy effect of carbon nano-fillers on the fracture toughness of structural composites. Compos B Eng 129:18–25

    Google Scholar 

  186. Min C, Liu D, Shen C, Zhang Q, Song H, Li S et al (2018) Unique synergistic effects of graphene oxide and carbon nanotube hybrids on the tribological properties of polyimide nanocomposites. Tribol Int 117:217–224

    Google Scholar 

  187. Al-Saleh MH (2015) Electrical and mechanical properties of graphene/carbon nanotube hybrid nanocomposites. Synth Met 209:41–46

    Google Scholar 

  188. Moosa AA, Sa AR, Ibrahim MN (2016) Mechanical and electrical properties of graphene nanoplates and carbon-nanotubes hybrid epoxy nanocomposites. Am J Mater Sci 6(6):157–165

    Google Scholar 

  189. Hawkins DA Jr, Haque A (2014) Fracture toughness of carbon-graphene/epoxy hybrid nanocomposites. Proced Eng 90:176–181

    Google Scholar 

  190. Chatterjee S, Nafezarefi F, Tai N, Schlagenhauf L, Nüesch F, Chu B (2012) Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon 50(15):5380–5386

    Google Scholar 

  191. Ghaleb Z, Mariatti M, Ariff Z (2017) Synergy effects of graphene and multiwalled carbon nanotubes hybrid system on properties of epoxy nanocomposites. J Reinf Plast Compos 36(9):685–695

    Google Scholar 

  192. Wang J, Jin X, Wu H, Guo S (2017) Polyimide reinforced with hybrid graphene oxide@ carbon nanotube: toward high strength, toughness, electrical conductivity. Carbon 123:502–513

    Google Scholar 

  193. Sahu SK, Badgayan ND, Samanta S, Sreekanth PR (2018) Quasistatic and dynamic nanomechanical properties of HDPE reinforced with 0/1/2 dimensional carbon nanofillers based hybrid nanocomposite using nanoindentation. Mater Chem Phys 203:173–184

    Google Scholar 

  194. Oh JY, Kim YS, Jung Y, Yang SJ, Park CR (2016) Preparation and exceptional mechanical properties of bone-mimicking size-tuned graphene oxide@ carbon nanotube hybrid paper. ACS Nano 10(2):2184–2192

    Google Scholar 

  195. Ribeiro H, Trigueiro JP, Owuor PS, Machado LD, Woellner CF, Pedrotti JJ et al (2018) Hybrid 2D nanostructures for mechanical reinforcement and thermal conductivity enhancement in polymer composites. Compos Sci Technol 159:103–110

    Google Scholar 

  196. Pradhan B, Srivastava SK (2014) Synergistic effect of three-dimensional multi-walled carbon nanotube–graphene nanofiller in enhancing the mechanical and thermal properties of high-performance silicone rubber. Polym Int 63(7):1219–1228

    Google Scholar 

  197. Montes S, Carrasco PM, Ruiz V, Cabañero G, Grande HJ, Labidi J et al (2015) Synergistic reinforcement of poly (vinyl alcohol) nanocomposites with cellulose nanocrystal-stabilized graphene. Compos Sci Technol 117:26–31

    Google Scholar 

  198. Li C, Li Y, She X, Vongsvivut J, Li J, She F et al (2015) Reinforcement and deformation behaviors of polyvinyl alcohol/graphene/montmorillonite clay composites. Compos Sci Technol 118:1–8

    Google Scholar 

  199. Wang F, Drzal LT, Qin Y, Huang Z (2016) Enhancement of fracture toughness, mechanical and thermal properties of rubber/epoxy composites by incorporation of graphene nanoplatelets. Compos A Appl Sci Manuf 87:10–22

    Google Scholar 

  200. Yang S-Y, Lin W-N, Huang Y-L, Tien H-W, Wang J-Y, Ma C-CM et al (2011) Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 49(3):793–803

    Google Scholar 

  201. Li W, Dichiara A, Bai J (2013) Carbon nanotube–graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites. Compos Sci Technol 74:221–227

    Google Scholar 

  202. Ashori A, Menbari S, Bahrami R (2016) Mechanical and thermo-mechanical properties of short carbon fiber reinforced polypropylene composites using exfoliated graphene nanoplatelets coating. J Ind Eng Chem 38:37–42

    Google Scholar 

  203. Wang C, Peng Q, Wu J, He X, Tong L, Luo Q et al (2014) Mechanical characteristics of individual multi-layer graphene-oxide sheets under direct tensile loading. Carbon 80:279–289

    Google Scholar 

  204. Ren PG, Di YY, Zhang Q, Li L, Pang H, Li ZM (2012) Composites of ultrahigh-molecular-weight polyethylene with graphene sheets and/or MWCNTs with segregated network structure: preparation and properties. Macromol Mater Eng 297(5):437–443

    Google Scholar 

  205. Cui X, Ding P, Zhuang N, Shi L, Song N, Tang S (2015) Thermal conductive and mechanical properties of polymeric composites based on solution-exfoliated boron nitride and graphene nanosheets: a morphology-promoted synergistic effect. ACS Appl Mater Interfaces 7(34):19068–19075

    Google Scholar 

  206. Zhao Y-H, Zhang Y-F, Bai S-L, Yuan X-W (2016) Carbon fibre/graphene foam/polymer composites with enhanced mechanical and thermal properties. Compos B Eng 94:102–108

    Google Scholar 

  207. Zhang S, Yin S, Rong C, Huo P, Jiang Z, Wang G (2013) Synergistic effects of functionalized graphene and functionalized multi-walled carbon nanotubes on the electrical and mechanical properties of poly (ether sulfone) composites. Eur Polym J 49(10):3125–3134

    Google Scholar 

  208. Zhang L, Jiao H, Jiu H, Chang J, Zhang S, Zhao Y (2016) Thermal, mechanical and electrical properties of polyurethane/(3-aminopropyl) triethoxysilane functionalized graphene/epoxy resin interpenetrating shape memory polymer composites. Compos A Appl Sci Manuf 90:286–295

    Google Scholar 

  209. Yuan B, Bao C, Qian X, Jiang S, Wen P, Xing W et al (2014) Synergetic dispersion effect of graphene nanohybrid on the thermal stability and mechanical properties of ethylene vinyl acetate copolymer nanocomposite. Ind Eng Chem Res 53(3):1143–1149

    Google Scholar 

  210. Du S-S, Li F, Xiao H-M, Li Y-Q, Hu N, Fu S-Y (2016) Tensile and flexural properties of graphene oxide coated-short glass fiber reinforced polyethersulfone composites. Compos B Eng 99:407–415

    Google Scholar 

  211. Wang R, Li Z, Liu W, Jiao W, Hao L, Yang F (2013) Attapulgite–graphene oxide hybrids as thermal and mechanical reinforcements for epoxy composites. Compos Sci Technol 87:29–35

    Google Scholar 

  212. Jiang S, Li Q, Wang J, He Z, Zhao Y, Kang M (2016) Multiscale graphene oxide–carbon fiber reinforcements for advanced polyurethane composites. Compos A Appl Sci Manuf 87:1–9

    Google Scholar 

  213. Li F, Liu Y, Qu C-B, Xiao H-M, Hua Y, Sui G-X et al (2015) Enhanced mechanical properties of short carbon fiber reinforced polyethersulfone composites by graphene oxide coating. Polymer 59:155–165

    Google Scholar 

  214. Li Z, Fan G, Guo Q, Li Z, Su Y, Zhang D (2015) Synergistic strengthening effect of graphene-carbon nanotube hybrid structure in aluminum matrix composites. Carbon 95:419–427

    Google Scholar 

  215. Fan J, Shi Z, Zhang L, Wang J, Yin J (2012) Aramid nanofiber-functionalized graphene nanosheets for polymer reinforcement. Nanoscale 4(22):7046–7055

    Google Scholar 

  216. Stewart R (2009) Lightweighting the automotive market. Reinf Plast 53(2):14–21

    Google Scholar 

  217. Carter LW, Hendricks JG, Bolley DS (1950) Elastomer reinforced with a modified clay. Google Patents

  218. McWilliams A (2006) Nanocomposites, nanoparticles, nanoclays, and nanotubes. NANO21C, BCC Research, Norwalk, CT

  219. Cui S, Cui C, Xie J, Liu S, Shi J (2018) Carbon fibers coated with graphene reinforced TiAl alloy composite with high strength and toughness. Sci Rep 8(1):2364

    Google Scholar 

  220. Humfeld KD, Griess KH (2016) Graphene fiber for aerospace composites. Google Patents

  221. Mittal G, Rhee KY, Mišković-Stanković V, Hui D (2017) Reinforcements in multi-scale polymer composites: processing, properties, and applications. Compos Part B Eng 138:122–139

    Google Scholar 

  222. http://www.nanotechmag.com/wp-content/uploads/2014/09/Wind-turbines-2-pages.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Sharma, K. & Dixit, A.R. A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. J Mater Sci 54, 5992–6026 (2019). https://doi.org/10.1007/s10853-018-03244-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-03244-3

Navigation