Journal of Materials Science

, Volume 54, Issue 7, pp 5907–5917 | Cite as

Vapor-based synthesis of bilayer anti-corrosion polymer coatings with excellent barrier property and superhydrophobicity

  • Ying Chen
  • Yumin YeEmail author
  • Zhong-Ren Chen


Bilayer polymer coatings that consisted of a highly cross-linked polyethylene glycol diacrylate (PEGDA) bottom layer and nanostructured poly(perfluorodecyl acrylate-co-ethylene glycol diacrylate) (P(PFDA-co-EGDA)) top layer were synthesized via a single-step vapor deposition method. The vapor-synthesized PEGDA single-layer film exhibits excellent barrier performance with oxygen permeability of 0.0066 Barrer, which is more than 16-fold smaller than that of commercial PET packaging film. The P(PFDA-co-EGDA) layer, grown on top of PEGDA, shows conical array structure. Such nanostructure combined with the low surface energy of PFDA moiety enables superhydrophobicity of the coating with water contact angle of 159°. The achieved superhydrophobicity is stable over more than 168 h upon immersion in NaCl solution. The bilayer coating structure imparts a synergistic effect to minimize both the diffusion of water and ions and permeation of oxygen, resulting in a significant drop of corrosion rate to 2.19 × 10−7 mm year−1, a more than 104-fold decrease compared to bare copper.



We thank Prof. Haichao Zhao and Ms. Shihui Qiu for the assistance with the electrochemical tests. We are grateful for the funding support from the National Natural Science Foundation of China (51873093), Technology Foundation for Selected Overseas Chinese Scholars by Ministry of Personnel of China, and Ningbo “3315” Innovation Initiative. This work was also sponsored by K. C. Wong Magna Fund in Ningbo University.

Supplementary material

10853_2018_3232_MOESM1_ESM.docx (867 kb)
Supplementary material 1 (DOCX 867 kb)


  1. 1.
    Bahlakeh G, Ramezanzadeh B, Saeb MR et al (2017) Corrosion protection properties and interfacial adhesion mechanism of an epoxy/polyamide coating applied on the steel surface decorated with cerium oxide nanofilm: complementary experimental, molecular dynamics (MD) and first principle quantum mechanics. Appl Surf Sci 419:650–669CrossRefGoogle Scholar
  2. 2.
    Yao M, Tang E, Guo C et al (2017) Synthesis of waterborne epoxy/polyacrylate composites via miniemulsion polymerization and corrosion resistance of coatings. Prog Org Coat 113(5):143–150CrossRefGoogle Scholar
  3. 3.
    Wang G, Yang J (2010) Influences of binder on fire protection and anticorrosion properties of intumescent fire resistive coating for steel structure. Surf Coat Technol 204(8):1186–1192CrossRefGoogle Scholar
  4. 4.
    Posner R, Ozcan O, Grundmeier G (2013) Water and ions at polymer/metal interfaces. In: da Silva LFM, Sato C (eds) Design of adhesive joints under humid conditions. Springer, Hamburg, pp 22–52Google Scholar
  5. 5.
    Thiel PA (1990) The interaction of water with solid surfaces: fundamental aspects. Surf Sci Rep 7:211–385CrossRefGoogle Scholar
  6. 6.
    Eduok U, Xu Z, Szpunar J (2018) Fabricating protective silica/PMDS composite films for Mg alloy: correlating bulk silica reinforcement with barrier performance. J Non Cryst Solids 485(1):47–56CrossRefGoogle Scholar
  7. 7.
    Schriver M, Regan W, Gannett WJ et al (2013) Graphene as a long-term metal oxidation barrier: worse than nothing. ACS Nano 7(7):5763–5768CrossRefGoogle Scholar
  8. 8.
    Ko TJ, Her EK, Shin B et al (2012) Water condensation behavior on the surface of a network of superhydrophobic carbon fibers with high-aspect-ratio nanostructures. Carbon 50(14):5085–5092CrossRefGoogle Scholar
  9. 9.
    Liu T, Yin Y, Chen S et al (2007) Super-hydrophobic surfaces improve corrosion resistance of copper in seawater. Electrochim Acta 52(11):3709–3713CrossRefGoogle Scholar
  10. 10.
    Xiong J, Sarkar DK, Chen XG (2017) Superhydrophobic honeycomb-like cobalt stearate thin films on aluminum with excellent anti-corrosion properties. Appl Surf Sci 407:361–370CrossRefGoogle Scholar
  11. 11.
    Onda T, Shibuichi S, Satoh N, Tsujii K (1996) Super-water-repellent fractal surfaces. Langmuir 12(9):2125–2127CrossRefGoogle Scholar
  12. 12.
    Ostrovskaya L, Diamant H, Witten TA et al (2000) Roughness-induced non-wetting. Europhys Lett 52(2):165–170CrossRefGoogle Scholar
  13. 13.
    Lafuma A, Quéré D (2003) Superhydrophobic states. Nat Mater 2(7):457–460CrossRefGoogle Scholar
  14. 14.
    Zhang X, Shi F, Niu J et al (2008) Superhydrophobic surfaces: from structural control to functional application. J Mater Chem 18(6):621–633CrossRefGoogle Scholar
  15. 15.
    Yu YJ, Kim JG, Cho SH, Boo JH (2003) Plasma-polymerized toluene films for corrosion inhibition in microelectronic devices. Surf Coat Technol 162(2–3):161–166CrossRefGoogle Scholar
  16. 16.
    Kang Z, Lai X, Sang J, Li Y (2011) Fabrication of hydrophobic/super-hydrophobic nano films on magnesium alloys by polymer plating. Thin Solid Films 520(2):800–806CrossRefGoogle Scholar
  17. 17.
    Huang T, Yeh L, Lai G et al (2016) Advanced superhydrophobic electroactive fluorinated polyimide and its application in anticorrosion coating. Int J Green Energy 14(2):113–120CrossRefGoogle Scholar
  18. 18.
    Yang Z, Wang L, Sun W et al (2017) Superhydrophobic epoxy coating modified by fluorographene used for anti-corrosion and self-cleaning. Appl Surf Sci 401:146–155CrossRefGoogle Scholar
  19. 19.
    Syed JA, Tang S, Meng X (2017) Super-hydrophobic multilayer coatings with layer number tuned swapping in surface wettability and redox catalytic anti-corrosion application. Sci Rep 7:4403CrossRefGoogle Scholar
  20. 20.
    Liu Y, Cao H, Chen Y et al (2016) Self-assembled super-hydrophobic multilayer films with corrosion resistance on copper substrate. RSC Adv 6(3):2379–2386CrossRefGoogle Scholar
  21. 21.
    Liu Q, Chen D, Kang Z (2015) One-Step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy. ACS Appl Mater Interfaces 7(3):1859–1867CrossRefGoogle Scholar
  22. 22.
    Qing Y, Yang C, Yu N et al (2016) Superhydrophobic TiO2/polyvinylidene fluoride composite surface with reversible wettability switching and corrosion resistance. Chem Eng J 290:37–44CrossRefGoogle Scholar
  23. 23.
    Ishizaki T, Hieda J, Saito N et al (2010) Corrosion resistance and chemical stability of super-hydrophobic film deposited on magnesium alloy AZ31 by microwave plasma-enhanced chemical vapor deposition. Electrochim Acta 55(23):7094–7101CrossRefGoogle Scholar
  24. 24.
    Vilaró I, Yagüe JL, Borrós S (2017) Superhydrophobic copper surfaces with anticorrosion properties fabricated by solventless CVD methods. ACS Appl Mater Interfaces 9(1):1057–1065CrossRefGoogle Scholar
  25. 25.
    Zhang F, Zhao L, Chen H et al (2008) Corrosion resistance of superhydrophobic layered double hydroxide films on aluminum. Angew Chemie Int Ed 47(13):2466–2469CrossRefGoogle Scholar
  26. 26.
    Ozaydin-Ince G, Coclite AM, Gleason KK (2012) CVD of polymeric thin films: applications in sensors, biotechnology, microelectronics/organic electronics, microfluidics, MEMS, composites and membranes. Rep Prog Phys 75(1):1–42CrossRefGoogle Scholar
  27. 27.
    Dimitrakellis P, Gogolides E (2018) Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: a review. Adv Colloid Interface Sci 254:1–21CrossRefGoogle Scholar
  28. 28.
    Lau KKS, Gleason KK (2006) Initiated chemical vapor deposition (iCVD) of poly(alkyl acrylates): an experimental study. Macromolecules 39(10):3688–3694CrossRefGoogle Scholar
  29. 29.
    Gupta M, Kapur V, Pinkerton NM, Gleason KK (2008) Initiated Chemical Vapor Deposition (iCVD) of conformal polymeric nanocoatings for the surface modification of high-aspect-ratio pores. Chem Mater 20(4):1646–1651CrossRefGoogle Scholar
  30. 30.
    Coclite AM, Howden RM, Borrelli DC et al (2013) 25th anniversary article: CVD polymers: a new paradigm for surface modification and device fabrication. Adv Mater 25(38):5392–5423CrossRefGoogle Scholar
  31. 31.
    Chan K, Gleason KK (2005) Initiated chemical vapor deposition of linear and cross-linked poly (2-hydroxyethyl methacrylate) for use as thin-film hydrogels. Langmuir 21(9):8930–8939CrossRefGoogle Scholar
  32. 32.
    Coclite AM, Ozaydin-Ince G, D’Agostino R, Gleason KK (2009) Flexible cross-linked organosilicon thin films by initiated chemical vapor deposition. Macromolecules 42(21):8138–8145CrossRefGoogle Scholar
  33. 33.
    Ye Y, Song Q, Mao Y (2011) Single-step fabrication of non-leaching antibacterial surfaces using vapor crosslinking. J Mater Chem 21(3):837–842CrossRefGoogle Scholar
  34. 34.
    Sun M, Wu Q, Xu J et al (2016) Vapor-based grafting of crosslinked poly(N-vinyl pyrrolidone) coatings with tuned hydrophilicity and anti-biofouling properties. J Mater Chem B 4(15):2669–2678CrossRefGoogle Scholar
  35. 35.
    Wang J, Wu L, Zhou J et al (2013) Construction of a novel painting system using electrodeposited SiO2 film as the pretreatment layer. Corros Sci 68:57–65CrossRefGoogle Scholar
  36. 36.
    Ye Y, Zhao H, Wang C et al (2018) Design of novel superhydrophobic aniline trimer modified siliceous material and its application for steel protection. Appl Surf Sci 457:752–763CrossRefGoogle Scholar
  37. 37.
    Chatham H (1996) Review: oxygen diffusion barrier properties of transparent oxide coatings on polymeric substrates. Surf Coat Technol 78:1–9CrossRefGoogle Scholar
  38. 38.
    Gao X, Sheng D, Liu X et al (2016) Tailoring morphology to improve the gas-barrier properties of thermoplastic polyurethane/ethylene-vinyl alcohol blends. Polym Eng Sci 56(8):922–931CrossRefGoogle Scholar
  39. 39.
    Tao R, Anthamatten M (2012) Condensation and polymerization of supersaturated monomer vapor. Langmuir 28(48):16580–16587CrossRefGoogle Scholar
  40. 40.
    Wacaser BA, Dick KA, Johansson J et al (2009) Preferential interface nucleation: an expansion of the VLS growth mechanism for nanowires. Adv Mater 21(2):153–165CrossRefGoogle Scholar
  41. 41.
    Coclite AM, Gleason KK (2012) Global and local planarization of surface roughness by chemical vapor deposition of organosilicon polymer for barrier applications. J Appl Phys 111(7):2929–2941CrossRefGoogle Scholar
  42. 42.
    Gupta M, Gleason KK (2006) Initiated chemical vapor deposition of poly(1H,1H,2H,2H-perfluorodecyl acrylate) thin films. Langmuir 22(24):10047–10052CrossRefGoogle Scholar
  43. 43.
    Xu J, Asatekin A, Gleason KK (2012) The design and synthesis of hard and impermeable, yet flexible, conformal organic coatings. Adv Mater 24(27):3692–3696CrossRefGoogle Scholar
  44. 44.
    Coclite AM, Shi Y, Gleason KK (2012) Grafted crystalline poly-perfluoroacrylate structures for superhydrophobic and oleophobic functional coatings. Adv Mater 24(33):4534–4539CrossRefGoogle Scholar
  45. 45.
    Khorsand S, Raeissi K, Ashrafizadeh F (2014) Corrosion resistance and long-term durability of super-hydrophobic nickel film prepared by electrodeposition process. Appl Surf Sci 305:498–505CrossRefGoogle Scholar
  46. 46.
    Li Y, Ge B, Men X et al (2016) A facile and fast approach to mechanically stable and rapid self-healing waterproof fabrics. Compos Sci Technol 125:55–61CrossRefGoogle Scholar
  47. 47.
    Yagüe JL, Gleason KK (2013) Enhanced cross-linked density by annealing on fluorinated polymers synthesized via initiated chemical vapor deposition to prevent surface reconstruction. Macromolecules 46(16):6548–6554CrossRefGoogle Scholar
  48. 48.
    Chang CH, Huang TC, Peng CW et al (2012) Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon 50(14):5044–5051CrossRefGoogle Scholar
  49. 49.
    Li X, Bandyopadhyay P, Nguyen TT et al (2018) Fabrication of functionalized graphene oxide/maleic anhydride grafted polypropylene composite film with excellent gas barrier and anticorrosion properties. J Memb Sci 547:80–92CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Materials Science and Chemical EngineeringNingbo UniversityNingboPeople’s Republic of China
  2. 2.Department of ChemistrySouthern University of Science and TechnologyShenzhenPeople’s Republic of China

Personalised recommendations