Skip to main content
Log in

Enantioselective addition of diethylzinc to aromatic aldehydes catalyzed by chiral BINOL-functionalized nanoporous graphene oxides

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The supporting material on which an asymmetric catalytic reaction takes place has proved to be an important component which could influence the efficiency and sometimes enantioselectivity of a heterogeneous asymmetric reaction. On the other hand, graphene oxide (GO) has attracted broad attentions because of its unique characteristics and potential applications in many fields. However, GOs have been rarely employed as the supporting materials for heterogeneous catalytic reactions, especially those enantioselective reactions. Herein, a new type of GO-based heterogeneous catalyst was prepared for enantioselective addition of diethylzinc to aromatic aldehydes. To produce this GO catalyst, commercial GO was firstly oxidized in an acidic environment to make nanoporous GOs and then enantiopure (R) or (S)-NH2-BINOLs were attached (covalently) onto the nanoporous GOs, and this GO-BINOL was subsequently treated by using Ti(OiPr)4. The as-prepared GO-BINOL-Ti catalyst displayed good reactivity (99%) and modest enantioselectivity (45% ee) in the following asymmetric addition reactions. We expect this preliminary demonstration could inspire the research by using GO as heterogeneous catalytic supports and could improve the enantioselectivity later.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Scheme 1
Figure 3

Similar content being viewed by others

References

  1. Gruttadauria M, Giacalone F, Noto R (2008) Supported proline and proline-derivatives as recyclable organocatalysts. Chem Soc Rev 37(8):1666–1688

    Article  CAS  Google Scholar 

  2. Wang X, Lu SM, Li J, Liu Y, Li C (2015) Conjugated microporous polymers with chiral binap ligand built-in as efficient catalysts for asymmetric hydrogenation. Catal Sci Technol 5(5):2585–2589

    Article  CAS  Google Scholar 

  3. Guo WG, Wang X, Zhang BY, Shen S, Zhou X, Wang P, Liu Y, Li C (2014) Facile synthesis of chiral spirooxindole-based isotetronic acids and 5-1H-Pyrrol-2-ones through cascade reactions with bifunctional organocatalysts. Chem Eur J 20(28):8545–8550

    Article  CAS  Google Scholar 

  4. Wang X, Li J, Lu S, Liu Y, Li C (2015) Efficient enantioselective hydrogenation of quinolines catalyzed by conjugated microporous polymers with embedded chiral BINAP ligand. Chin J Catal 36(8):1170–1174

    Article  CAS  Google Scholar 

  5. Wang WB, Lu SM, Yang PY, Han XW, Zhou YG (2003) Highly enantioselective iridium-catalyzed hydrogenation of heteroaromatic compounds, quinolines. J Am Chem Soc 125(35):10536–10537

    Article  CAS  Google Scholar 

  6. Li C (2004) Chiral synthesis on catalysts immobilized in microporous and mesoporous materials. Catal Rev 46(3–4):419–492

    Article  CAS  Google Scholar 

  7. Zhang HD, Zhang YM, Li C (2006) Enantioselective epoxidation of unfunctionalized olefins catalyzed by the Mn(salen) catalysts immobilized in the nanopores of mesoporous materials. J Catal 238(2):369–381

    Article  CAS  Google Scholar 

  8. Ding SY, Gao J, Wang Q, Zhang Y, Song WG, Su CY, Wang W (2011) Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J Am Chem Soc 133(49):19816–19822

    Article  CAS  Google Scholar 

  9. Chen H, Müller MB, Gilmore KJ, Wallace GG, Li D (2010) Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater 20(18):3557–3561

    Article  CAS  Google Scholar 

  10. Karousis N, Economopoulos SP, Sarantopoulou E, Tagmatarchis N (2010) Porphyrin counter anion in imidazolium-modified graphene-oxide. Carbon 48(3):854–860

    Article  CAS  Google Scholar 

  11. Petit C, Bandosz TJ (2010) Enhanced adsorption of ammonia on metal-organic framework/graphite oxide composites: analysis of surface interactions. Adv Funct Mater 20(1):111–118

    Article  CAS  Google Scholar 

  12. Xu YX, Bai H, Lu GW, Li C, Shi GQ (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130(18):5856–5857

    Article  CAS  Google Scholar 

  13. Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    Article  CAS  Google Scholar 

  14. Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4(9):611–622

    Article  CAS  Google Scholar 

  15. Ma X, Tao H, Yang K, Feng L, Cheng L, Shi X, Li Y, Guo L, Liu Z (2012) A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res 5(3):199–212

    Article  CAS  Google Scholar 

  16. Hu XG, Mu L, Zhou QX, Wen JP, Pawliszyn J (2011) ssDNA aptamer-based column for simultaneous removal of nanogram per liter level of illicit and analgesic pharmaceuticals in drinking water. Environ Sci Technol 45(11):4890–4895

    Article  CAS  Google Scholar 

  17. Pumera M (2011) Graphene-based nanomaterials for energy storage. Energy Environ Sci 4(3):668–674

    Article  CAS  Google Scholar 

  18. Sun Y, Wu Q, Shi G (2011) Graphene based new energy materials. Energy Environ Sci 4(4):1113–1132

    Article  CAS  Google Scholar 

  19. Han Q, Xia Q, Guo DM, Li C, Fu YZ (2015) Chiral glutamic acid functionalized graphene: preparation and application. Anal Methods-UK 7(13):5387–5390

    Article  CAS  Google Scholar 

  20. Kotchey GP, Allen BL, Vedala H, Yanamala N, Kapralov AA, Tyurina YY, Klein-Seetharaman J, Kagan VE, Star A (2011) The enzymatic oxidation of graphene oxide. ACS Nano 5(3):2098–2108

    Article  CAS  Google Scholar 

  21. Siamaki AR, Khder AERS, Abdelsayed V, EI-Shall MS, Gupton BF (2011) Microwave-assisted synthesis of palladium nanoparticles supported on graphene: a highly active and recyclable catalyst for carbon-carbon cross-coupling reactions. J Catal 279(1):1–11

    Article  CAS  Google Scholar 

  22. Suzuki N, Wang YC, Elvati P, Qu ZB, Kim K, Jiang S, Baumeister E, Lee J, Yeom B, Bahng JH, Lee J, Violi A, Kotov NA (2016) Chiral graphene quantum dots. ACS Nano 10(2):1744–1755

    Article  CAS  Google Scholar 

  23. Yeh TF, Chan FF, Hsieh CT, Teng HS (2011) Graphite oxide with different oxygenated levels for hydrogen and oxygen production from water under illumination: the band positions of graphite oxide. J Phys Chem C 115(45):22587–22597

    Article  CAS  Google Scholar 

  24. Tan R, Li CY, Luo JQ, Kong Y, Zheng WG (2013) An effective heterogeneous l-proline catalyst for the direct asymmetric aldol reaction using graphene oxide as support. J Catal 298(2):138–147

    Article  CAS  Google Scholar 

  25. Nasseri M, Allahresani A, Raissi H (2014) Grafting of a chiral Mn(Ш) complex on graphene oxide nanosheets and its catalytic activity for alkene epoxidation. RSC Adv 4(50):26087–26093

    Article  CAS  Google Scholar 

  26. Wu CD, Hu A, Zhang L, Lin W (2005) A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis. J Am Chem Soc 127(25):8940–8941

    Article  CAS  Google Scholar 

  27. Lv N, Xie M, Gu W, Ruan H, Qiu S, Zhou C, Cui Z (2013) Synthesis, properties, and structures of functionalized peri-xanthenoxanthene. Org Lett 15(10):2382–2385

    Article  CAS  Google Scholar 

  28. Zheng D, Cao W, Ma H, Ding K (2016) Efficient synthesis of chloromethyl methyl ether and one-pot hydroxyl protection. Chin J Org Chem 36(5):1122–1126

    Article  CAS  Google Scholar 

  29. Jankovský O, Nováček M, Luxa J, Sedmidubský D, Fila V, Pumera M, Sofer Z (2016) A new member of the graphene family: graphene acid. Chem Eur J 22(48):17416–17424

    Article  CAS  Google Scholar 

  30. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy A (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11(3):771–778

    Article  CAS  Google Scholar 

  31. Ding C, Wei W, Sun H, Ding J, Ren J, Qu X (2014) Reduced graphene oxide supported chiral Ni particles as magnetically reusable and enantioselective catalyst for asymmetric hydrogenation. Carbon 79(1):615–622

    Article  CAS  Google Scholar 

  32. Hu X, Mu L, Wen J, Zhou Q (2012) Covalently synthesized graphene oxide-aptamer nanosheets for efficient visible-light photocatalysis of nucleic acids and proteins of viruses. Carbon 50(8):2772–2781

    Article  CAS  Google Scholar 

  33. Zheng W, Tan R, Yin S, Zhang Y, Zhao G, Chen Y, Yin D (2015) Ionic liquid-functionalized graphene oxide as an efficient support for the chiral salen Mn(Ш) complex in asymmetric epoxidation of unfunctionalized olefins. Catal Sci Technol 5(4):2092–2102

    Article  CAS  Google Scholar 

  34. Cao J, Yin HJ, Song R (2013) Circular dichroism of graphene oxide: the chiral structure model. Front Mater Sci 7(1):83–90

    Article  Google Scholar 

  35. Xu C, Yuan RS, Wang X (2014) Selective reduction of graphene oxide. New Carbon Mater 29(1):61–66

    Article  CAS  Google Scholar 

  36. Zhang ZG, Qian H, Longmire J, Zhang XM (2000) Synthesis of chiral bisphosphines with tunable bite angles and their applications in asymmetric hydrogenation of β-Ketoesters. J Org Chem 65(19):6223–6226

    Article  CAS  Google Scholar 

  37. Zhang JH, Liao J, Cui X, Yu KB, Zhu J, Deng JG, Zhu SF, Wang LX, Zhou QL, Chung LW, Ye T (2002) Highly efficient and practical resolution of 1,1′-spirobiindane-7,7′-diol by inclusion crystallization with n-benzylcinchonidinium chloride. Tetrahedron-Asymmetry 13(13):1363–1366

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the Ministry of Science and Technology of China (No. 2016YFA0203400) and the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Yan.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1384 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Guo, J., Qie, F. et al. Enantioselective addition of diethylzinc to aromatic aldehydes catalyzed by chiral BINOL-functionalized nanoporous graphene oxides. J Mater Sci 54, 6908–6916 (2019). https://doi.org/10.1007/s10853-018-03230-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-03230-9

Navigation