Skip to main content
Log in

Polymorphism and piezoelectricity of glycine nano-crystals grown inside alumina nano-pores

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Glycine nano-crystals were grown inside alumina nano-pores due to a precipitation process from over-saturated aqueous liquid solutions. The α-glycine polymorph crystals were formed at a higher over-saturation concentration than that of the β-glycine polymorph crystals. The results indicate that the type of the glycine polymorph formed inside the alumina pores is kinetically controlled. A model is suggested to explain the competition between formations of the two polymorphs inside nano-pores. The β-glycine polymorph crystals are distinguished from the α-glycine polymorph crystals not only by XRD measurements but mainly by piezoelectric measurements, where only the non-centro-symmetric β-glycine polymorph crystals show a piezoelectric current response to applied mechanical pressures as low as 1 Pa in the environmental pressure of 1 atm (10–3% pressure change).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Veinberg SL, Friedl ZW, Harris KJ, O’Dell LA, Schurko RW (2015) Ultra-wideline 14N solid-state NMR as a method for differentiating polymorphs: glycine as a case study. Cry Eng Commun 17:5225–5236

    Article  CAS  Google Scholar 

  2. Rodríguez-Spong B, Price CP, Jayasankar A, Matzger AJ, Rodríguez-Hornedo N (2004) General principles of pharmaceutical solid polymorphism: a supramolecular perspective. Adv Drug Deliv Rev 56:241–274

    Article  CAS  Google Scholar 

  3. Wang L, Shan T, Xie B, Ling C, Shao S, Jin P, Zheng Y (2019) Glycine betaine reduces chilling injury in peach fruit by enhancing phenolic and sugar metabolisms. Food Chem 272:530–538

    Article  CAS  Google Scholar 

  4. Shan T, Peng Jin Yu, Zhang YH, Wang X, Zheng Y (2016) Exogenous glycine betaine treatment enhances chilling tolerance of peach fruit during cold storage. Postharvest Biol Technol 114:101–110

    Article  CAS  Google Scholar 

  5. Guo J, Guo X, Wang S, Zhang Z, Dong J, Peng L, Ding W (2016) Effects of glycine and current density on the mechanism of electrodeposition, composition and properties of Ni–Mn films prepared in ionic liquid. Appl Surf Sci 365:31–37

    Article  CAS  Google Scholar 

  6. Yang G, He P, Xin-Ping Q (2018) Inhibition effect of glycine on molybdenum corrosion during CMP in alkaline H2O2 based abrasive free slurry. Appl Surf Sci 427:148–155

    Article  CAS  Google Scholar 

  7. Di Profio G, Reijonen MT, Caliandro R, Guagliardi A, Curciod E, Driolid E (2013) Insights into the polymorphism of glycine: membrane crystallization in an electric field. Phys Chem Chem Phys 15:9271–9280

    Article  CAS  Google Scholar 

  8. Perlovich GL, Hansen LK, Bauer-Brandl A (2001) The polymorphism of glycine thermochemical and structural aspects. G. L. Perlovich. J Therm Anal Calorim 66:699–715

    Article  CAS  Google Scholar 

  9. Shutova ES et al (2003) Polymorphism of glycine thermodynamic aspects. Part II. Polymorphic transitions. J Therm Anal Calorim 73:419–428

    Article  Google Scholar 

  10. Iitaka Y (1961) The crystal structure of γ-glycine. Acta Crystallogr 14:1–10

    Article  CAS  Google Scholar 

  11. Rabesiaka M, Sghaier M, BernardFraisse CP, Havet J-L, Dichi E (2010) Preparation of glycine polymorphs crystallized in water and physicochemical characterizations. J Cryst Growth 312:1860–1865

    Article  CAS  Google Scholar 

  12. Ashok Kumar R, EzhilVizhi R, Vijayan N, Rajan Babu D (2011) Structural, dielectric and piezoelectric properties of nonlinear optical gamma-glycine single crystals. Phys B 406:2594–2600

    Article  CAS  Google Scholar 

  13. Tylczynski Z, Busz P (2016) Low-temperature phase transition in g-glycine single crystal. Pyroelectric, piezoelectric, dielectric and elastic properties. Mater Chem Phys 183:254–262

    Article  CAS  Google Scholar 

  14. Narayana Moolya B, Jayarama A, Sureshkumar MR, Dharmaprakash SM (2005) Hydrogen bonded nonlinear optical g-glycine: crystal growth and characterization. J Cryst Growth 280:581–586

    Article  CAS  Google Scholar 

  15. Kholkin AL et al (2012) Nanoscale ferroelectricity in crystalline γ-glycine. Adv Funct Mater 22:2996–3003

    Article  CAS  Google Scholar 

  16. Weissbuch I, Vladimir Yu, Torbeev LL, Lahav M (2005) Solvent effect on crystal polymorphism: why addition of methanol or ethanol to aqueous solutions induces the precipitation of the least stable b form of glycine. Angew Chem Int Ed 44:3226–3229

    Article  CAS  Google Scholar 

  17. Marsh RE (1958) Refinement of the crystal structure of glycine. Acta Crystallogr 11:654–663

    Article  CAS  Google Scholar 

  18. Kholkin AL et al (2017) Self-assembly of organic ferroelectrics by evaporative dewetting: a case of β-glycine. ACS Appl Mater Interfaces 9:20029–20037

    Article  CAS  Google Scholar 

  19. Vasileva D, Nuraeva A, Vasilev S, Zelenovskiy P, Shur V Ya, Seyedhosseini E, Kholkin AL (2015) Patterning and nanoscale characterization of ferroelectric amino acid beta-glycine. IEEE. https://doi.org/10.1109/isaf.2015.7172707

    Article  Google Scholar 

  20. Isakov D, de Matos E, Gomes IB, Almeida B, Belsley M, Costa M, Rodrigues V, Heredia A (2011) Production of polar β-glycine nanofibers with enhanced nonlinear optical and piezoelectric properties. Cryst Growth Des 11:4288–4291

    Article  CAS  Google Scholar 

  21. Kang JF, Zaccaro J, Ulman A, Myerson A (2000) Nucleation and growth of glycine crystals on self-assembled monolayers on gold. Langmuir 16:3791–3796

    Article  CAS  Google Scholar 

  22. Torbeev VY, Shavit E, Weissbuch I, Leiserowitz L, Lahav M (2005) Control of crystal polymorphism by tuning the structure of auxiliary molecules as nucleation inhibitors. The beta-polymorph of glycine grown in aqueous solutions. Cryst Growth Des 5(6):2190–2196

    Article  CAS  Google Scholar 

  23. Drebushchaka VA, Boldyreva EV, Drebushchak TN, Shutovab ES (2002) Synthesis and calorimetric investigation of unstable β-glycine. J Cryst Growth 241:266–268

    Article  Google Scholar 

  24. Lee IS, Kim KT, Lee AY, Myerson AS (2008) Concomitant crystallization of glycine on patterned substrates: the effect of pH on the polymorphic outcome. Cryst Growth Des 8(1):108–113

    Article  CAS  Google Scholar 

  25. Han G, Thirunahari S, Chow PS, Tan Reginald B H (2013) Resolving the longstanding riddle of pH-dependent outcome of glycine polymorphic nucleation. CrystEngComm 15:1218–1224

    Article  CAS  Google Scholar 

  26. Yang X, Myerson AS (2015) Nanocrystal formation and polymorphism of glycine. CrystEngComm 17:723–728

    Article  CAS  Google Scholar 

  27. Trauffer DI, Maassel AK, Snyder RC (2016) Non-needle-like morphology of β-glycine particles formed from water solutions via monodisperse droplet evaporation. Cryst Growth Des 16:1917–1922

    Article  CAS  Google Scholar 

  28. Lee AY, Lee IS, Myerson AS (2006) Factors affecting the polymorphic outcome of glycine crystals constrained on patterned substrates. Chem Eng Technol 29(1):281–285

    Article  CAS  Google Scholar 

  29. Hamilton BD, Hillmyer MA, Ward MD (2008) Glycine polymorphism in nanoscale crystallization chambers. Cryst Growth Des 8(9):3368–3375

    Article  CAS  Google Scholar 

  30. Hamilton BD, Weissbuch I, Lahav M, Hillmyer MA, Ward MD (2009) Manipulating crystal orientation in nanoscale cylindrical pores by stereochemical inhibition. J Am Chem Soc 131:2588–2596

    Article  CAS  Google Scholar 

  31. Jiang Q, Chunhua H, Ward MD (2013) Stereochemical control of polymorph transitions in nanoscale reactors. J Am Chem Soc 135:2144–2147

    Article  CAS  Google Scholar 

  32. RenukaDevi K, Gnanakamatchi V, Srinivasan K (2014) Attainment of unstable β nucleation of glycine through novel swift cooling crystallization process. J Cryst Growth 400:34–42

    Article  CAS  Google Scholar 

  33. Tolman R (1947) The effect of droplet size on surface tension. J Chem Phys 17:333–337

    Article  Google Scholar 

  34. Demattei RC, Feigelson RS, Weber PC (1992) Factors affecting the morphology of isocitrate lyase crystals. J Cryst Growth 122(1–4):21–30

    Article  CAS  Google Scholar 

  35. Bishara H, Berger S (2018) Highly sensitive piezoelectric response of sodium nitrite nano-crystals to low applied mechanical pressures. J Mater Sci Eng A 8(5–6):85–94

    CAS  Google Scholar 

  36. Parks C, Koswara A, Tung H-H, Nere NK, Bordawekar S, Nagy ZK, Ramkrishna D (2017) Nanocrystal dissolution kinetics and solubility increase prediction from molecular dynamics: the case of α-, β-, and γ-glycine. Mol Pharm 14:1023–1032

    Article  CAS  Google Scholar 

  37. Langan P, Mason SA, Myles D, Schoenborn BP (2002) Structural characterization of crystals of alpha-glycine during anomalous electrical behavior. Acta Crystallogr 58:728–733

    Article  CAS  Google Scholar 

  38. Dichi E, Sghaier M, Fraisse B, Bonhomme F, Keller G (2008) New preparation by sublimation at low pressure of glycine and physicochemical study. J Alloys Compds 458:595

    Article  CAS  Google Scholar 

  39. Jiang Q, Shtukenberg AG, Ward MD, Chunhua H (2015) Non-topotactic phase transformations in single crystals of β-glycine. Cryst Growth Des 15:2568–2573

    Article  CAS  Google Scholar 

  40. Zang Y, Zhang F, Di C-a, Zhu D (2015) Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater Horiz 2:140–156

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Bishara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bishara, H., Berger, S. Polymorphism and piezoelectricity of glycine nano-crystals grown inside alumina nano-pores. J Mater Sci 54, 4619–4625 (2019). https://doi.org/10.1007/s10853-018-03211-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-03211-y

Navigation