Advertisement

Journal of Materials Science

, Volume 53, Issue 8, pp 5987–5996 | Cite as

An optical method for characterizing domain wall motions and ferroelectric hysteresis in tetragonal Mn:Fe:KTN co-doped crystals

  • Qieni Lu
  • Bihua Li
  • Zhen Li
  • Haitao Dai
  • Yushan Liao
Ceramics
  • 125 Downloads

Abstract

An optical method is proposed to extract the displacement vector of domain wall (DW) sidewise motion from ferroelectric domain configuration pattern on a tetragonal Mn:Fe:KTN crystal. The ferroelectric domain configuration evolution under an external electric field is observed in situ using optical microscope imaging system, and the relative displacement of DW sideways motion between two adjacent electric fields is extracted. By the combination of the new domain length vector extracted, the ferroelectric domain displacement vector as a function of field strength can be obtained; what is more, the hysteresis loop can be achieved during field cycling. The method provides an access to directly manipulating DW motion and exploring the properties of ferroelectric materials from ferroelectric domain configuration pattern.

Notes

Acknowledgements

This work is supported by Open Project of State Key Laboratory of Transient Optics and Photonic Technology (No. SKLST201505) and National Natural Science Foundation of China (NSFC) (61077072).

Compliance with ethical standards

Statement of the conflict of interest

There is no conflict of interest.

References

  1. 1.
    Jason H, Pan X, James WR, Fred JW, Han JP, Charles HA, Ma TP (2010) Ferroelectric field effect transistors for memory applications. Adv Mater 22:2957–2961CrossRefGoogle Scholar
  2. 2.
    Scott JF (2007) Applications of modern ferroelectrics. Science 315:954–959CrossRefGoogle Scholar
  3. 3.
    Gallo K, Assanto G (1999) All-optical diode based on second-harmonic generation in an asymmetric waveguide. J Opt Soc Am B 16:267–269CrossRefGoogle Scholar
  4. 4.
    Masters BR (1998) Three-dimensional microscopic tomographic imaging of the cataract in a human lens in vivo. Opt Express 3:332–338CrossRefGoogle Scholar
  5. 5.
    Yelin D, Oron D, Thiberge S, Moses E, Silberberg Y (2003) Multiphoton plasmon-resonance microscopy. Opt Express 11:1385–1391CrossRefGoogle Scholar
  6. 6.
    Behnken BN, Karunasiri G, Chamberlin DR, Robrish PR, Faist J (2008) Real-time imaging using a 2.8 ~ THz quantum cascade laser and uncooled infrared microbolometer camera. Opt Lett 33:440–442CrossRefGoogle Scholar
  7. 7.
    Wessels BW (2007) Ferroelectric epitaxial thin films for integrated optics. Annu Rev Mater Res 37:659–679CrossRefGoogle Scholar
  8. 8.
    Paruch P, Giamarchi T, Triscone JM (2005) Domain wall roughness in epitaxial ferroelectric PbZr0.2Ti0.8O3 thin films. Phys Rev Lett 94:197601CrossRefGoogle Scholar
  9. 9.
    Catalan G, Seidel J, Ramesh R, Scott JF (2012) Domain wall nanoelectronics. Rev Mod Phys 84:119–156CrossRefGoogle Scholar
  10. 10.
    Shur VY (2006) Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3. J Mater Sci 41:199–210.  https://doi.org/10.1007/s10853-005-6065-7 CrossRefGoogle Scholar
  11. 11.
    Agar JC, Damodaran AR, Okatan MB et al (2016) Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films. Nat Mater 15:549–556CrossRefGoogle Scholar
  12. 12.
    Pertsev DA, Petraru A, Kohlstedt H, Waser R, Bdikin IK, Kiselev D, Kholkin AL (2008) Dynamics of ferroelectric nanodomains in BaTiO3 epitaxial thin films via piezoresponse force microscopy. Nanotechnology 19:375703CrossRefGoogle Scholar
  13. 13.
    Salje EKH (2010) Multiferroic domain boundaries as active memory devices: trajectories towards domain boundary engineering. Chem phys chem 11:940–950CrossRefGoogle Scholar
  14. 14.
    Chen HB, Liu YH, Li YQ (2014) Electric field control of multiferroic domain wall motion. J Appl Phys 115:119–RCrossRefGoogle Scholar
  15. 15.
    Miller RC, Savage A (1958) Velocity of sidewise 180° domain-wall motion in BaTiO3 as a function of the applied electric field. Phys Rev 112:755–762CrossRefGoogle Scholar
  16. 16.
    Choi JW, Ko DK, Ro JH, Yu NE (2012) Sidewise domain wall velocity of MgO doped stoichiometric lithium niobate by real-time visualization. Ferroelectrics 439:13–19CrossRefGoogle Scholar
  17. 17.
    Ye WN, Cj Lu, Zhang YC, Zhou YC (2015) Types and configurations of domain walls in ferroelectric Bi4Ti3O12 single crystals. J Appl Cryst 48:1080–1088CrossRefGoogle Scholar
  18. 18.
    Su D, Ding Y, Zhu JS, Yao YY, Bao P, Liu JS, Wang YN (2004) Morphology and mobility of 90° domains in La-substituted bismuth titanate. J Phys: Condens Matter 16:4549–4556Google Scholar
  19. 19.
    Ding Y, Liu JS, Maclaren I, Wang YN, Kuo KH (2001) Study of domain walls and their effect on switching property in Pb(Zr, Ti)O3, SrBi2Ta2O9 and Bi4Ti3O12. Ferroelectrics 262:37–46CrossRefGoogle Scholar
  20. 20.
    Pan XQ, Jiang JC, Theis CD, Schlom DG (2003) Domain structure of epitaxial Bi4Ti3O12 thin films grown on (001) SrTiO3 substrates. Appl Phys Lett 83:2315–2317CrossRefGoogle Scholar
  21. 21.
    Winkler CR, Damodaran AR, Karthik J, Martin LW, Taheri ML (2012) Direct observation of ferroelectric domain switching in varying electric field regimes using in situ TEM. Micron 43:1121–1126CrossRefGoogle Scholar
  22. 22.
    Ye WN, Tang LL, Lu CJ, Li HB, Zhou YC (2016) In situ observation of the motion of ferroelectric domain walls in Bi4Ti3O12 single crystals. J Appl Cryst 49:1645–1652CrossRefGoogle Scholar
  23. 23.
    Tian H, Yao B, Tan P, Zhou ZX, Shi G, Gong DW, Zhang R (2015) Double-loop hysteresis in tetragonal KTa0.58Nb0.42O3 correlated to recoverable reorientations of the asymmetric polar domains. Appl Phys Lett 106:102903CrossRefGoogle Scholar
  24. 24.
    Perez R, Toribio E, Gorri JA, Benadero L (1987) Determination of domain wall sidewise velocity: an electrical method. Ferroelectrics 74:3–11CrossRefGoogle Scholar
  25. 25.
    Lu QN, Han JX, Dai HT, Ge BZ, Zhao S (2015) Visualization of spatial-temporal evolution of light-induced refractive index in Mn:Fe:KTN co-doped crystal based on digital holographic interferometry. IEEE J Photonics 7:2600711Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Precision Instrument and Optoelectronics EngineeringTianjin UniversityTianjinChina
  2. 2.Key Laboratory of Opto-electronics Information TechnologyMinistry of EducationTianjinChina
  3. 3.State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision MechanicsUniversity of the Chinese Academy of SciencesXi’anChina
  4. 4.School of ScienceTianjin UniversityTianjinChina

Personalised recommendations