Skip to main content
Log in

An optical method for characterizing domain wall motions and ferroelectric hysteresis in tetragonal Mn:Fe:KTN co-doped crystals

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An optical method is proposed to extract the displacement vector of domain wall (DW) sidewise motion from ferroelectric domain configuration pattern on a tetragonal Mn:Fe:KTN crystal. The ferroelectric domain configuration evolution under an external electric field is observed in situ using optical microscope imaging system, and the relative displacement of DW sideways motion between two adjacent electric fields is extracted. By the combination of the new domain length vector extracted, the ferroelectric domain displacement vector as a function of field strength can be obtained; what is more, the hysteresis loop can be achieved during field cycling. The method provides an access to directly manipulating DW motion and exploring the properties of ferroelectric materials from ferroelectric domain configuration pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Jason H, Pan X, James WR, Fred JW, Han JP, Charles HA, Ma TP (2010) Ferroelectric field effect transistors for memory applications. Adv Mater 22:2957–2961

    Article  Google Scholar 

  2. Scott JF (2007) Applications of modern ferroelectrics. Science 315:954–959

    Article  Google Scholar 

  3. Gallo K, Assanto G (1999) All-optical diode based on second-harmonic generation in an asymmetric waveguide. J Opt Soc Am B 16:267–269

    Article  Google Scholar 

  4. Masters BR (1998) Three-dimensional microscopic tomographic imaging of the cataract in a human lens in vivo. Opt Express 3:332–338

    Article  Google Scholar 

  5. Yelin D, Oron D, Thiberge S, Moses E, Silberberg Y (2003) Multiphoton plasmon-resonance microscopy. Opt Express 11:1385–1391

    Article  Google Scholar 

  6. Behnken BN, Karunasiri G, Chamberlin DR, Robrish PR, Faist J (2008) Real-time imaging using a 2.8 ~ THz quantum cascade laser and uncooled infrared microbolometer camera. Opt Lett 33:440–442

    Article  Google Scholar 

  7. Wessels BW (2007) Ferroelectric epitaxial thin films for integrated optics. Annu Rev Mater Res 37:659–679

    Article  Google Scholar 

  8. Paruch P, Giamarchi T, Triscone JM (2005) Domain wall roughness in epitaxial ferroelectric PbZr0.2Ti0.8O3 thin films. Phys Rev Lett 94:197601

    Article  Google Scholar 

  9. Catalan G, Seidel J, Ramesh R, Scott JF (2012) Domain wall nanoelectronics. Rev Mod Phys 84:119–156

    Article  Google Scholar 

  10. Shur VY (2006) Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3. J Mater Sci 41:199–210. https://doi.org/10.1007/s10853-005-6065-7

    Article  Google Scholar 

  11. Agar JC, Damodaran AR, Okatan MB et al (2016) Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films. Nat Mater 15:549–556

    Article  Google Scholar 

  12. Pertsev DA, Petraru A, Kohlstedt H, Waser R, Bdikin IK, Kiselev D, Kholkin AL (2008) Dynamics of ferroelectric nanodomains in BaTiO3 epitaxial thin films via piezoresponse force microscopy. Nanotechnology 19:375703

    Article  Google Scholar 

  13. Salje EKH (2010) Multiferroic domain boundaries as active memory devices: trajectories towards domain boundary engineering. Chem phys chem 11:940–950

    Article  Google Scholar 

  14. Chen HB, Liu YH, Li YQ (2014) Electric field control of multiferroic domain wall motion. J Appl Phys 115:119–R

    Article  Google Scholar 

  15. Miller RC, Savage A (1958) Velocity of sidewise 180° domain-wall motion in BaTiO3 as a function of the applied electric field. Phys Rev 112:755–762

    Article  Google Scholar 

  16. Choi JW, Ko DK, Ro JH, Yu NE (2012) Sidewise domain wall velocity of MgO doped stoichiometric lithium niobate by real-time visualization. Ferroelectrics 439:13–19

    Article  Google Scholar 

  17. Ye WN, Cj Lu, Zhang YC, Zhou YC (2015) Types and configurations of domain walls in ferroelectric Bi4Ti3O12 single crystals. J Appl Cryst 48:1080–1088

    Article  Google Scholar 

  18. Su D, Ding Y, Zhu JS, Yao YY, Bao P, Liu JS, Wang YN (2004) Morphology and mobility of 90° domains in La-substituted bismuth titanate. J Phys: Condens Matter 16:4549–4556

    Google Scholar 

  19. Ding Y, Liu JS, Maclaren I, Wang YN, Kuo KH (2001) Study of domain walls and their effect on switching property in Pb(Zr, Ti)O3, SrBi2Ta2O9 and Bi4Ti3O12. Ferroelectrics 262:37–46

    Article  Google Scholar 

  20. Pan XQ, Jiang JC, Theis CD, Schlom DG (2003) Domain structure of epitaxial Bi4Ti3O12 thin films grown on (001) SrTiO3 substrates. Appl Phys Lett 83:2315–2317

    Article  Google Scholar 

  21. Winkler CR, Damodaran AR, Karthik J, Martin LW, Taheri ML (2012) Direct observation of ferroelectric domain switching in varying electric field regimes using in situ TEM. Micron 43:1121–1126

    Article  Google Scholar 

  22. Ye WN, Tang LL, Lu CJ, Li HB, Zhou YC (2016) In situ observation of the motion of ferroelectric domain walls in Bi4Ti3O12 single crystals. J Appl Cryst 49:1645–1652

    Article  Google Scholar 

  23. Tian H, Yao B, Tan P, Zhou ZX, Shi G, Gong DW, Zhang R (2015) Double-loop hysteresis in tetragonal KTa0.58Nb0.42O3 correlated to recoverable reorientations of the asymmetric polar domains. Appl Phys Lett 106:102903

    Article  Google Scholar 

  24. Perez R, Toribio E, Gorri JA, Benadero L (1987) Determination of domain wall sidewise velocity: an electrical method. Ferroelectrics 74:3–11

    Article  Google Scholar 

  25. Lu QN, Han JX, Dai HT, Ge BZ, Zhao S (2015) Visualization of spatial-temporal evolution of light-induced refractive index in Mn:Fe:KTN co-doped crystal based on digital holographic interferometry. IEEE J Photonics 7:2600711

    Google Scholar 

Download references

Acknowledgements

This work is supported by Open Project of State Key Laboratory of Transient Optics and Photonic Technology (No. SKLST201505) and National Natural Science Foundation of China (NSFC) (61077072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qieni Lu.

Ethics declarations

Statement of the conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Q., Li, B., Li, Z. et al. An optical method for characterizing domain wall motions and ferroelectric hysteresis in tetragonal Mn:Fe:KTN co-doped crystals. J Mater Sci 53, 5987–5996 (2018). https://doi.org/10.1007/s10853-017-1981-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1981-x

Keywords

Navigation