Skip to main content
Log in

Temperature dependent compressive yield strength model for short fiber reinforced magnesium alloy matrix composites

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, based on our previous study regarding the temperature-dependent yield strength for metallic materials and the existing strengthening theories, a physics-based temperature dependent compressive yield strength model for short fiber reinforced magnesium alloy matrix composites was developed. This model was verified by comparison with the experimental data of seven types of magnesium alloy matrix composites. Good agreement between the model predictions and the experimental data was obtained, which fully validates the reasonability of the present model. Moreover, based on the model and the existing material parameters, the influencing factor analysis for short fiber reinforced magnesium alloy matrix composites was systematically conducted. Some novel insights regarding the control mechanism of their temperature dependent compressive yield strengths were provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Jayalakshmi S, Kailas SV, Seshan S (2002) Tensile behaviour of squeeze cast AM100 magnesium alloy and its Al2O3 fibre reinforced composites. Compos Part A Appl Sci Manuf 33(8):1135–1140

    Article  Google Scholar 

  2. Zhang XZ, Zhang Q, Hu H (2014) Tensile behaviour and microstructure of magnesium AM60-based hybrid composite containing Al2O3 fibres and particles. Mat Sci Eng A 607:269–276

    Article  Google Scholar 

  3. Chen ZH (2007) Heat-proof magnesium alloy. Chemical Industry Press, Beijing

    Google Scholar 

  4. Dey A, Pandey KM (2015) Magnesium metal matrix composites—a review. Rev Adv Mater Sci 42:58–67

    Google Scholar 

  5. Trojanová Z, Gärtnerová V, Lukáč P, Drozd Z (2004) Mechanical properties of Mg alloys composites reinforced with short Saffil® fibres. J Alloy Compd 378(1):19–26

    Article  Google Scholar 

  6. Trojanová Z, Száraz Z, Lábár J, Lukáč P (2005) Deformation behaviour of an AS21 alloy reinforced by short Saffil fibres and SiC particles. J Mater Process Tech 162:131–138

    Article  Google Scholar 

  7. Trojanová Z, Száraz Z (2005) Mechanical properties of AS21 magnesium alloy based composites. Trans Tech Publ, Mater Sci Forum, pp 363–366

    Google Scholar 

  8. Trojanová Z, Drozd Z, Kúdela S, Száraz Z, Lukáč P (2007) Strengthening in Mg–Li matrix composites. Compos Sci Technol 67(9):1965–1973

    Article  Google Scholar 

  9. Liu J, Qi LH, Zhang HY, Hou HP (2015) Effect of liquid–solid extrusion on the high-temperature compressive properties of Csf/Mg composites. Mater Manuf Process 30(11):1391–1396

    Article  Google Scholar 

  10. Ataya S, El-Magd E (2007) Quasi-static behavior of Mg-alloys with and without short-fiber reinforcement. Theor Appl Fract Mech 47(2):102–112

    Article  Google Scholar 

  11. Liu J, Qi LH, Guan JT, Ma YQ, Zhou JM (2012) Compressive behavior of Csf/AZ91D composites by liquid–solid extrusion directly following vacuum infiltration technique. Mat Sci Eng A 531:164–170

    Article  Google Scholar 

  12. Rudajevová A, Lukáč P (2003) Thermal strain in Mg composites. Acta Mater 51(18):5579–5586

    Article  Google Scholar 

  13. Farkas G, Trojanová Z, Száraz Z, Minárik P, Máthis K (2015) Effect of the fiber orientation on the deformation mechanisms of magnesium-alloy based composite. Mater Sci Eng A 643:25–31

    Article  Google Scholar 

  14. Farkas G, Máthis K, Pilch J, Minárik P, Lukáš P, Vinogradov A (2017) Deformation behavior of Mg-alloy-based composites at different temperatures studied by neutron diffraction. Mater Sci Eng A 685:284–293

    Article  Google Scholar 

  15. Karbhari VM, Wilkins DJ (1991) An “engineering” modification to the shear-lag model as applied to whisker and particulate reinforced composites. Scripta Metall Mater 25(3):707–712

    Article  Google Scholar 

  16. Nardone VC, Prewo KM (1986) On the strength of discontinuous silicon carbide reinforced aluminum composites. Scripta Metall 20(1):43–48

    Article  Google Scholar 

  17. Zhang CY, Qiu YP (2003) Modified shear lag model for fibers and fillers with irregular cross-sectional shapes. J Adhes Sci Technol 17(3):397–408

    Article  Google Scholar 

  18. Ryu HJ, Cha SI, Hong SH (2003) Generalized shear-lag model for load transfer in SiC/Al metal-matrix composites. J Mater Res 18(12):2851–2858

    Article  Google Scholar 

  19. Jiang ZH, Lian JS, Yang DZ, Dong SL (1998) An analytical study of the influence of thermal residual stresses on the elastic and yield behaviors of short fiber-reinforced metal matrix composites. Mat Sci Eng A 248(1–2):256–275

    Article  Google Scholar 

  20. Arsenault RJ, Shi N (1986) Dislocation generation due to differences between the coefficients of thermal expansion. Mat Sci Eng 81:175–187

    Article  Google Scholar 

  21. Clyne TW, Withers PJ (1993) An introduction to metal matrix composites. Cambridge University Press, Cambridge

    Book  Google Scholar 

  22. Taylor GI (1934) The mechanism of plastic deformation of crystals. Part I. Theor Proc R Soc Lond Ser A 145(855):362–387

    Article  Google Scholar 

  23. Ashby MF (1993) Criteria for selecting the components of composites. Acta Metall Mater 41(5):1313–1335

    Article  Google Scholar 

  24. Luster JW, Thumann M, Baumann R (1993) Mechanical properties of aluminium alloy 6061–Al2O3 composites. Mater Sci Tech-lond 9(10):853–862

    Article  Google Scholar 

  25. Lilholt H (1991) Aspects of deformation of metal matrix composites. Mat Sci Eng A 135:161–171

    Article  Google Scholar 

  26. Hall EO (1951) The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc Lond B 64(9):747–753

    Article  Google Scholar 

  27. Petch NJ (1953) The cleavage strengh of polycrystals. J Iron Steel Inst 174:25–28

    Google Scholar 

  28. Zou ZX, Xiang JZ, Xu SY (2012) Theoretical derivation of Hall-Petch relationship and discussion of its applicable range. Phys Exam Test 30(6):13–17

    Google Scholar 

  29. Fu EG, Li N, Misra A, Hoagland RG, Wang H, Zhang X (2008) Mechanical properties of sputtered Cu/V and Al/Nb multilayer films. Mat Sci Eng A 493(1–2):283–287

    Article  Google Scholar 

  30. Tang XF, Wang BY, Huo YM, Ma WY, Zhou J, Ji HC et al (2016) Unified modeling of flow behavior and microstructure evolution in hot forming of a Ni-based superalloy. Mat Sci Eng A 662:54–64

    Article  Google Scholar 

  31. Zhang XH, Li WG, Ma JZ, Geng PJ, Shao JX, Wu XZ (2017) A novel temperature dependent yield strength model for metals considering precipitation strengthening and strain rate. Comp Mater Sci 129:147–155

    Article  Google Scholar 

  32. Arsenault RJ, Taya M (1987) Thermal residual stress in metal matrix composite. Acta Metall 35(3):651–659

    Article  Google Scholar 

  33. ASM International Handbook Committee (1990) ASM Handbook, volume 2, properties and selection: nonferrous alloys and special-purpose materials. ASM International, Materials Park, OH

    Google Scholar 

  34. Magnesium AS21-F, Die Cast, http://www.matweb.com/search/DataSheet.aspx?MatGUID=b910504d247f418e8e70a10ad0f549c2&ckck=1. Accessed 21 Oct 2017

  35. Magnesium AE42-F, Die Cast, http://www.matweb.com/search/DataSheet.aspx?MatGUID=503232647ec44a408f191d57dd336ea5&ckck=1. Accessed 21 Oct 2017

  36. Lavrentev FF, Pokhil YA, Zolotukhina IN (1978) Analysis of pairwise dislocation interaction and its contribution to flow stress during magnesium crystal basal slip. Mat Sci Eng 32(2):113–119

    Article  Google Scholar 

  37. Murray JL (1982) The Al–Mg (aluminum–magnesium) system. J Phase Equilib 3(1):60–74

    Article  Google Scholar 

  38. Luo A, Pekguleryuz MO (1994) Cast magnesium alloys for elevated temperature applications. J Mater Sci 29(20):5259–5271. https://doi.org/10.1007/BF01171534

    Article  Google Scholar 

  39. Aune TK, Westengen H (1995) Property update on magnesium die casting alloys. SAE Technical Paper 950424

  40. MIL-HDBK-5H (1998) Metallic materials and elements for aerospace vehicle structures. In: Knovel Interactive ed: U.S. Department of Defense

  41. Akbulut H, Durman M, Yilmaz F (1998) High temperature Young’s modulus of alumina short fibre reinforced Al-Si MMCs produced by liquid infiltration. Mater Sci Tech-lond 14(4):299–305

    Article  Google Scholar 

  42. Li WX (2005) Magnesium and magnesium alloys. Central South University Press, Changsha

    Google Scholar 

  43. Rudajevová A, Lukáč P (2005) Comparison of the thermal properties of AM20 and AS21 magnesium alloys. Mat Sci Eng A 397(1–2):16–21

    Article  Google Scholar 

  44. Trojanová Z, Száraz Z, Palček P, Chalupová M (2011) Magnesium alloys based composites. In: Czerwinski F (ed) Magnesium alloys-design, processing and properties. InTech, Rijeka, pp 501–526

    Google Scholar 

  45. Zhang P (2005) Creep behavior of the die-cast Mg–Al alloy AS21. Scripta Mater 52(4):277–282

    Article  Google Scholar 

  46. Counts WA, Friák M, Raabe D, Neugebauer J (2009) Using ab initio calculations in designing bcc Mg–Li alloys for ultra-lightweight applications. Acta Mater 57(1):69–76

    Article  Google Scholar 

  47. Trojanová Z, Lukác P, Kainer KU, Gärtnerová V (2005) Dynamic strain ageing during stress relaxation in selected magnesium alloys containing rare earth elements. Adv Eng Mater 7(11):1027–1032

    Article  Google Scholar 

  48. Lü Z, Zhou J, Sun ZM, Chen RS (2013) Effect of rare earth elements on the structures and mechanical properties of magnesium alloys. Chin Sci Bull 58(7):816–820

    Article  Google Scholar 

  49. Tian WL, Qi LH, Zhou JM, Guan JT (2014) Effects of the fiber orientation and fiber aspect ratio on the tensile strength of Csf/Mg composites. Comp Mater Sci 89:6–11

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11672050, 11472066, 11727802 and 11602044, the Fundamental Research Funds for the Central Universities under Grant No. 106112017CDJQJ328840 and the Chongqing University Graduate Student Research Innovation Project under Grant No. CYS17016. We also thank the three anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiguo Li or Ruzhuan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, J., Li, W., Wang, R. et al. Temperature dependent compressive yield strength model for short fiber reinforced magnesium alloy matrix composites. J Mater Sci 53, 6065–6079 (2018). https://doi.org/10.1007/s10853-017-1980-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1980-y

Keywords

Navigation