Journal of Materials Science

, Volume 53, Issue 8, pp 6170–6182 | Cite as

High-efficiency photocatalytic performance of Cr–SrTiO3-modified black TiO2 nanotube arrays

Energy materials


TiO2 nanotube arrays with high surface areas have grown in significance recently due to their excellent charge transport properties. However, they can only be excited by ultraviolet irradiation due to their wide band gap; this drawback has greatly limited their applicability to real-world devices. In this study, a series of heterostructured black-Cr–SrTiO3/TiO2 nanotube arrays with heterojunction structures were successfully fabricated using a hydrothermal method; this method simply involved controlling the hydrothermal reaction time used. The developed black-Cr–SrTiO3/TiO2 nanotube arrays exhibited superior charge separation and excellent visible light response performances. Furthermore, their visible light photocatalytic performance was significantly improved; this was attributed to the synergistic effect of coupling black TiO2 nanotube arrays with Cr–SrTiO3.



This study was supported by the National Natural Science Foundation of China (21406164, 21466035), the National Key Basic Research and Development Program of China (973 Program, No. 2014CB239300).


  1. 1.
    Rani S et al (2010) Synthesis and applications of electrochemically self-assembled titania nanotube arrays. Phys Chem Chem Phys 12(12):2780–2800CrossRefGoogle Scholar
  2. 2.
    Wang G et al (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11(7):3026–3033CrossRefGoogle Scholar
  3. 3.
    Ye M et al (2012) High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays. J Am Chem Soc 134(38):15720–15723CrossRefGoogle Scholar
  4. 4.
    Zhu Y-F et al (2014) Fabrication of heterostructured SrTiO3/TiO2 nanotube array films and their use in photocathodic protection of stainless steel. Electrochim Acta 121:361–368CrossRefGoogle Scholar
  5. 5.
    Asahi R et al (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271CrossRefGoogle Scholar
  6. 6.
    Sun W-T et al (2008) CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J Am Chem Soc 130(4):1124–1125CrossRefGoogle Scholar
  7. 7.
    Chen X et al (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570CrossRefGoogle Scholar
  8. 8.
    Kong J, Rui Z, Ji H (2017) Carbon nitride polymer sensitization and nitrogen doping of SrTiO3/TiO2 nanotube heterostructure toward high visible light photocatalytic performance. Ind Eng Chem Res 56(36):9999–10008CrossRefGoogle Scholar
  9. 9.
    Zhang X et al (2010) Synthesis and photocatalytic activity of highly ordered TiO2 and SrTiO3/TiO2 nanotube arrays on Ti substrates. J Am Ceram Soc 93(9):2771–2778CrossRefGoogle Scholar
  10. 10.
    Tan X et al (2016) Preparation and photocatalytic activity of BiOBr/TiO2 heterojunction nanocomposites. Trans Tianjin Univ 22:211–217CrossRefGoogle Scholar
  11. 11.
    Wrighton MS et al (1976) Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential. J Am Chem Soc 98(10):2774–2779CrossRefGoogle Scholar
  12. 12.
    Martirez JMP et al (2015) Synergistic oxygen evolving activity of a TiO2-rich reconstructed SrTiO3 (001) surface. J Am Chem Soc 137(8):2939–2947CrossRefGoogle Scholar
  13. 13.
    Guo E, Yin L (2015) Tailored SrTiO3/TiO2 heterostructures for dye-sensitized solar cells with enhanced photoelectric conversion performance. J Mater Chem A 3(25):13390–13401CrossRefGoogle Scholar
  14. 14.
    Cui H et al (2014) Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting. J Mater Chem A 2(23):8612–8616CrossRefGoogle Scholar
  15. 15.
    Wang Z et al (2013) Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ Sci 6(10):3007–3014CrossRefGoogle Scholar
  16. 16.
    Iwashina K, Kudo A (2011) Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation. J Am Chem Soc 133(34):13272–13275CrossRefGoogle Scholar
  17. 17.
    Zou F et al (2012) Template-free synthesis of mesoporous N-doped SrTiO3 perovskite with high visible-light-driven photocatalytic activity. Chem Commun 48(68):8514–8516CrossRefGoogle Scholar
  18. 18.
    Subramanian V, Roeder RK, Wolf EE (2006) Synthesis and UV–vis light photoactivity of noble-metal-SrTiO3 composites. Ind Eng Chem Res 45(7):2187–2193CrossRefGoogle Scholar
  19. 19.
    Jiao Z et al (2013) Visible-light-driven photoelectrochemical and photocatalytic performances of Cr-doped SrTiO3/TiO2 heterostructured nanotube arrays. Sci Rep 3:2720CrossRefGoogle Scholar
  20. 20.
    Jiao Z et al (2014) TiO2 nanotube arrays modified with Cr-doped SrTiO3 nanocubes for highly efficient hydrogen evolution under visible light. Chem A Eur J 20(9):2654–2662CrossRefGoogle Scholar
  21. 21.
    Zhang Z et al (2016) Time-dependent formation of oxygen vacancies in black TiO2 nanotube arrays and the effect on photoelectrocatalytic and photoelectrochemical properties. Int J Hydrog Energy 41(27):11634–11643CrossRefGoogle Scholar
  22. 22.
    Lee S et al (2012) Crystallographically preferred oriented TiO2 nanotube arrays for efficient photovoltaic energy conversion. Energy Environ Sci 5(7):7989–7995CrossRefGoogle Scholar
  23. 23.
    Zhang J et al (2009) Tailored TiO2–SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano 4(1):387–395CrossRefGoogle Scholar
  24. 24.
    Cao T et al (2011) A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity. Langmuir 27(6):2946–2952CrossRefGoogle Scholar
  25. 25.
    Li X, Guo Z, He T (2013) The doping mechanism of Cr into TiO2 and its influence on the photocatalytic performance. Phys Chem Chem Phys 15(46):20037–20045CrossRefGoogle Scholar
  26. 26.
    Wang D et al (2006) Photophysical and photocatalytic properties of SrTiO3 doped with Cr cations on different sites. J Phys Chem B 110(32):15824–15830CrossRefGoogle Scholar
  27. 27.
    Shang M et al (2016) Synergistic effects of SrTiO3 nanocubes and Ti3+ dual-doping for highly improved photoelectrochemical performance of TiO2 nanotube arrays under visible light. J Mater Chem A 4(16):5849–5853CrossRefGoogle Scholar
  28. 28.
    Tian B, Li C, Zhang J (2012) One-step preparation, characterization and visible-light photocatalytic activity of Cr-doped TiO2 with anatase and rutile bicrystalline phases. Chem Eng J 191:402–409CrossRefGoogle Scholar
  29. 29.
    Zhu J et al (2006) Hydrothermal doping method for preparation of Cr3+–TiO2 photocatalysts with concentration gradient distribution of Cr3+. Appl Catal B 62(3):329–335CrossRefGoogle Scholar
  30. 30.
    Ould-Chikh S et al (2014) Photocatalysis with chromium-doped TiO2: bulk and surface doping. Chemsuschem 7(5):1361–1371CrossRefGoogle Scholar
  31. 31.
    Ng J et al (2010) Hybridized nanowires and cubes: a novel architecture of a heterojunctioned TiO2/SrTiO3 thin film for efficient water splitting. Adv Funct Mater 20(24):4287–4294CrossRefGoogle Scholar
  32. 32.
    Ren R et al (2015) Controllable synthesis and tunable photocatalytic properties of Ti3+-doped TiO2. Sci Rep 5:10714CrossRefGoogle Scholar
  33. 33.
    Ma F et al (2012) Characterization of redox and acid properties of mesoporous Cr–TiO2 and its efficient performance for oxidative dehydrogenation of propane. Appl Catal A 427:145–154CrossRefGoogle Scholar
  34. 34.
    Bai H et al (2012) Hierarchical SrTiO3/TiO2 nanofibers heterostructures with high efficiency in photocatalytic H2 generation. Appl Catal B 125:367–374CrossRefGoogle Scholar
  35. 35.
    Wang S et al (2015) Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. J Am Chem Soc 137(8):2975–2983CrossRefGoogle Scholar
  36. 36.
    Burnside S et al (1999) Nanocrystalline mesoporous strontium titanate as photoelectrode material for photosensitized solar devices: increasing photovoltage through flatband potential engineering. J Phys Chem B 103(43):9328–9332CrossRefGoogle Scholar
  37. 37.
    Kong J, Rui Z, Ji H (2016) Enhanced photocatalytic mineralization of gaseous toluene over SrTiO3 by surface hydroxylation. Ind Eng Chem Res 55(46):11923–11930CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Environmental Science and EngineeringTianjin UniversityTianjinPeople’s Republic of China
  2. 2.School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China
  3. 3.School of ScienceTibet UniversityLhasaPeople’s Republic of China
  4. 4.College of Resources and EnvironmentLinYi UniversityLinyiPeople’s Republic of China

Personalised recommendations