Skip to main content
Log in

High-efficiency photocatalytic performance of Cr–SrTiO3-modified black TiO2 nanotube arrays

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

TiO2 nanotube arrays with high surface areas have grown in significance recently due to their excellent charge transport properties. However, they can only be excited by ultraviolet irradiation due to their wide band gap; this drawback has greatly limited their applicability to real-world devices. In this study, a series of heterostructured black-Cr–SrTiO3/TiO2 nanotube arrays with heterojunction structures were successfully fabricated using a hydrothermal method; this method simply involved controlling the hydrothermal reaction time used. The developed black-Cr–SrTiO3/TiO2 nanotube arrays exhibited superior charge separation and excellent visible light response performances. Furthermore, their visible light photocatalytic performance was significantly improved; this was attributed to the synergistic effect of coupling black TiO2 nanotube arrays with Cr–SrTiO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Rani S et al (2010) Synthesis and applications of electrochemically self-assembled titania nanotube arrays. Phys Chem Chem Phys 12(12):2780–2800

    Article  Google Scholar 

  2. Wang G et al (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11(7):3026–3033

    Article  Google Scholar 

  3. Ye M et al (2012) High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays. J Am Chem Soc 134(38):15720–15723

    Article  Google Scholar 

  4. Zhu Y-F et al (2014) Fabrication of heterostructured SrTiO3/TiO2 nanotube array films and their use in photocathodic protection of stainless steel. Electrochim Acta 121:361–368

    Article  Google Scholar 

  5. Asahi R et al (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271

    Article  Google Scholar 

  6. Sun W-T et al (2008) CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J Am Chem Soc 130(4):1124–1125

    Article  Google Scholar 

  7. Chen X et al (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570

    Article  Google Scholar 

  8. Kong J, Rui Z, Ji H (2017) Carbon nitride polymer sensitization and nitrogen doping of SrTiO3/TiO2 nanotube heterostructure toward high visible light photocatalytic performance. Ind Eng Chem Res 56(36):9999–10008

    Article  Google Scholar 

  9. Zhang X et al (2010) Synthesis and photocatalytic activity of highly ordered TiO2 and SrTiO3/TiO2 nanotube arrays on Ti substrates. J Am Ceram Soc 93(9):2771–2778

    Article  Google Scholar 

  10. Tan X et al (2016) Preparation and photocatalytic activity of BiOBr/TiO2 heterojunction nanocomposites. Trans Tianjin Univ 22:211–217

    Article  Google Scholar 

  11. Wrighton MS et al (1976) Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential. J Am Chem Soc 98(10):2774–2779

    Article  Google Scholar 

  12. Martirez JMP et al (2015) Synergistic oxygen evolving activity of a TiO2-rich reconstructed SrTiO3 (001) surface. J Am Chem Soc 137(8):2939–2947

    Article  Google Scholar 

  13. Guo E, Yin L (2015) Tailored SrTiO3/TiO2 heterostructures for dye-sensitized solar cells with enhanced photoelectric conversion performance. J Mater Chem A 3(25):13390–13401

    Article  Google Scholar 

  14. Cui H et al (2014) Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting. J Mater Chem A 2(23):8612–8616

    Article  Google Scholar 

  15. Wang Z et al (2013) Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ Sci 6(10):3007–3014

    Article  Google Scholar 

  16. Iwashina K, Kudo A (2011) Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation. J Am Chem Soc 133(34):13272–13275

    Article  Google Scholar 

  17. Zou F et al (2012) Template-free synthesis of mesoporous N-doped SrTiO3 perovskite with high visible-light-driven photocatalytic activity. Chem Commun 48(68):8514–8516

    Article  Google Scholar 

  18. Subramanian V, Roeder RK, Wolf EE (2006) Synthesis and UV–vis light photoactivity of noble-metal-SrTiO3 composites. Ind Eng Chem Res 45(7):2187–2193

    Article  Google Scholar 

  19. Jiao Z et al (2013) Visible-light-driven photoelectrochemical and photocatalytic performances of Cr-doped SrTiO3/TiO2 heterostructured nanotube arrays. Sci Rep 3:2720

    Article  Google Scholar 

  20. Jiao Z et al (2014) TiO2 nanotube arrays modified with Cr-doped SrTiO3 nanocubes for highly efficient hydrogen evolution under visible light. Chem A Eur J 20(9):2654–2662

    Article  Google Scholar 

  21. Zhang Z et al (2016) Time-dependent formation of oxygen vacancies in black TiO2 nanotube arrays and the effect on photoelectrocatalytic and photoelectrochemical properties. Int J Hydrog Energy 41(27):11634–11643

    Article  Google Scholar 

  22. Lee S et al (2012) Crystallographically preferred oriented TiO2 nanotube arrays for efficient photovoltaic energy conversion. Energy Environ Sci 5(7):7989–7995

    Article  Google Scholar 

  23. Zhang J et al (2009) Tailored TiO2–SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano 4(1):387–395

    Article  Google Scholar 

  24. Cao T et al (2011) A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity. Langmuir 27(6):2946–2952

    Article  Google Scholar 

  25. Li X, Guo Z, He T (2013) The doping mechanism of Cr into TiO2 and its influence on the photocatalytic performance. Phys Chem Chem Phys 15(46):20037–20045

    Article  Google Scholar 

  26. Wang D et al (2006) Photophysical and photocatalytic properties of SrTiO3 doped with Cr cations on different sites. J Phys Chem B 110(32):15824–15830

    Article  Google Scholar 

  27. Shang M et al (2016) Synergistic effects of SrTiO3 nanocubes and Ti3+ dual-doping for highly improved photoelectrochemical performance of TiO2 nanotube arrays under visible light. J Mater Chem A 4(16):5849–5853

    Article  Google Scholar 

  28. Tian B, Li C, Zhang J (2012) One-step preparation, characterization and visible-light photocatalytic activity of Cr-doped TiO2 with anatase and rutile bicrystalline phases. Chem Eng J 191:402–409

    Article  Google Scholar 

  29. Zhu J et al (2006) Hydrothermal doping method for preparation of Cr3+–TiO2 photocatalysts with concentration gradient distribution of Cr3+. Appl Catal B 62(3):329–335

    Article  Google Scholar 

  30. Ould-Chikh S et al (2014) Photocatalysis with chromium-doped TiO2: bulk and surface doping. Chemsuschem 7(5):1361–1371

    Article  Google Scholar 

  31. Ng J et al (2010) Hybridized nanowires and cubes: a novel architecture of a heterojunctioned TiO2/SrTiO3 thin film for efficient water splitting. Adv Funct Mater 20(24):4287–4294

    Article  Google Scholar 

  32. Ren R et al (2015) Controllable synthesis and tunable photocatalytic properties of Ti3+-doped TiO2. Sci Rep 5:10714

    Article  Google Scholar 

  33. Ma F et al (2012) Characterization of redox and acid properties of mesoporous Cr–TiO2 and its efficient performance for oxidative dehydrogenation of propane. Appl Catal A 427:145–154

    Article  Google Scholar 

  34. Bai H et al (2012) Hierarchical SrTiO3/TiO2 nanofibers heterostructures with high efficiency in photocatalytic H2 generation. Appl Catal B 125:367–374

    Article  Google Scholar 

  35. Wang S et al (2015) Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. J Am Chem Soc 137(8):2975–2983

    Article  Google Scholar 

  36. Burnside S et al (1999) Nanocrystalline mesoporous strontium titanate as photoelectrode material for photosensitized solar devices: increasing photovoltage through flatband potential engineering. J Phys Chem B 103(43):9328–9332

    Article  Google Scholar 

  37. Kong J, Rui Z, Ji H (2016) Enhanced photocatalytic mineralization of gaseous toluene over SrTiO3 by surface hydroxylation. Ind Eng Chem Res 55(46):11923–11930

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (21406164, 21466035), the National Key Basic Research and Development Program of China (973 Program, No. 2014CB239300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Jing, W., Tan, X. et al. High-efficiency photocatalytic performance of Cr–SrTiO3-modified black TiO2 nanotube arrays. J Mater Sci 53, 6170–6182 (2018). https://doi.org/10.1007/s10853-017-1977-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1977-6

Keywords

Navigation