Advertisement

Journal of Materials Science

, Volume 53, Issue 8, pp 6157–6169 | Cite as

Sea urchin-like architectures and nanowire arrays of cobalt–manganese sulfides for superior electrochemical energy storage performance

  • Yuying Zhu
  • Haichao Chen
  • Si Chen
  • Chao Li
  • Meiqiang Fan
  • Kangying Shu
Energy materials
  • 387 Downloads

Abstract

Cobalt–manganese (Co–Mn)-based bimetallic compounds (such as Co–Mn oxides, hydroxides) have been investigated as a new type of high-performance electroactive materials for energy storage device. Nevertheless, Co–Mn sulfides are seldom investigated, especially for those with hierarchical architectures and structures. Herein, we first adopt a facile two-step hydrothermal route and synthesize Co–Mn sulfides with sea urchin-like architecture and nanowire array structure. The anion-exchange sulfuration process gives rise to hierarchical structure with numerous nanosheets grown on the surface. Benefiting from the attractive structures and the high electrochemical activity of Co–Mn sulfides, the Co–Mn sulfides show improved performance than Co–Mn oxides with similar morphology. Especially, the Ni foam-supported Co–Mn sulfide nanowire arrays exhibit superior performance of 502 C g−1 at 1 A g−1 as well as excellent cycling stability with 107% of capacity retention after 2000 cycles. In addition, a hybrid supercapacitor Co–Mn sulfide nanowire arrays/RGO displays an energy density of 18.4 Wh kg−1 at 375 W kg−1. More importantly, an ultrahigh power density (22.5 kW kg−1 at 9.5 Wh kg−1) and outstanding cycling stability can also be achieved. The excellent electrochemical performance can be ascribed to the attractive structure and high electrochemical activity of Co–Mn sulfide.

Notes

Acknowledgements

The authors acknowledge financial support from the Natural Science Foundation of Zhejiang Province (No. LQ17B010002), Natural Science Foundation of Shandong Province (No. ZR2017BB042), China Postdoctoral Science Foundation (No. 2017M612184) and source innovation plan project for basic application research of Qingdao (No. 17-1-1-25-jch).

Supplementary material

10853_2017_1976_MOESM1_ESM.docx (3.1 mb)
Supplementary material 1 (DOCX 3143 kb)

References

  1. 1.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRefGoogle Scholar
  2. 2.
    Lu XH, Yu MH, Wang GM, Tong YX, Li Y (2014) Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ Sci 7:2160–2181CrossRefGoogle Scholar
  3. 3.
    Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531CrossRefGoogle Scholar
  4. 4.
    Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828CrossRefGoogle Scholar
  5. 5.
    Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Acaemic/Plenum Press, New YorkCrossRefGoogle Scholar
  6. 6.
    Lim E, Jo CS, Kim H, Kim MH, Mun Y, Chun J, Ye YJ, Hwang J, Ha KS, Roh KC, Kang K, Yoon S, Lee J (2015) Facile synthesis of Nb2O5@carbon core-shell nanocrystals with controlled crystalline structure for high-power anodes in hybrid supercapacitors. ACS Nano 9:7497–7505CrossRefGoogle Scholar
  7. 7.
    Wang HL, Xu ZW, Li Z, Cui K, Ding J, Kohandehghan A, Tan XH, Beniamin-Zahiri BC, Olsen CMB, Holt D Mitlin (2014) Hybrid device employing three-dimensional arrays of MnO in carbon nanosheets bridges battery-supercapacitor divide. Nano Lett 14:1987–1994CrossRefGoogle Scholar
  8. 8.
    Lesel BK, Ko JS, Dunn B, Tolbert SH (2016) Mesoporous LixMn2O4 thin film cathodes for lithium-ion pseudocapacitors. ACS Nano 10:7572–7581CrossRefGoogle Scholar
  9. 9.
    Elshahawy AM, Guan C, Li X, Zhang H, Hu YT, Wu HJ, Pennycook SJ, Wang J (2017) Sulfur-doped cobalt phosphide nanotube arrays for highly stable hybrid supercapacitor. Nano Energy 39:162–171CrossRefGoogle Scholar
  10. 10.
    Liu XY, Zhang YQ, Xia XH, Shi SJ, Lu Y, Wang XL, Gu CD, Tu JP (2013) Self-assembled porous NiCo2O4 hetero-structure array for electrochemical capacitor. J Power Source 239:157–163CrossRefGoogle Scholar
  11. 11.
    Chen HC, Jiang JJ, Zhang L, Qi T, Xia DD, Wan HZ (2014) Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors. J Power Sources 248:28–36CrossRefGoogle Scholar
  12. 12.
    Guan C, Liu XM, Ren WN, Li X, Cheng CW, Wang J (2017) Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv Energy Mater 7:1602391CrossRefGoogle Scholar
  13. 13.
    Javel MS, Zhang CL, Chen L, Xi Y, Hu CQ (2016) Hierarchical mesoporous NiFe2O4 nanocone forest directly growing on carbon textile for high performance flexible supercapacitors. J Mater Chem A 4:8851–8859CrossRefGoogle Scholar
  14. 14.
    Wu H, Lou Z, Yang H, Shen GZ (2015) A flexible spiral-type supercapacitor based on ZnCo2O4 nanorod electrodes. Nanoscale 7:1921–1926CrossRefGoogle Scholar
  15. 15.
    Sahoo S, Shim JJ (2017) Facile synthesis of three-dimensional ternary ZnCo2O4/reduced graphene oxide/NiO composite film on nickel foam for next generation supercapacitor electrodes. ACS Sustain Chem Eng 5:241–251CrossRefGoogle Scholar
  16. 16.
    Liu B, Liu BY, Wang QF, Wang XF, Xiang QY, Chen D, Shen GZ (2013) New energy storage option: toward ZnCo2O4 nanorods/nickel foam architectures for high-performance supercapacitors. ACS Appl Mater Interfaces 5:10011–10017CrossRefGoogle Scholar
  17. 17.
    Xu YN, Wang XF, An CH, Wang YJ, Jiao LF, Yuan HT (2014) Facile synthesis route of porous MnCo2O4 and CoMn2O4 nanowires and their excellent electrochemical properties in supercapacitors. J Mater Chem A 2:16480–16488CrossRefGoogle Scholar
  18. 18.
    Li L, He F, Gai SL, Zhang SH, Gao P, Zhang ML, Chen YJ, Yang PP (2014) Hollow structured and flower-like C@MnCo2O4 composite for high electrochemical performance in a supercapacitor. CrystEngComm 16:9873–9881CrossRefGoogle Scholar
  19. 19.
    Mondal AK, Su DW, Chen SQ, Ung A, Kim HS, Wang GX (2015) Mesoporous MnCo2O4 with a flake-like structure as advanced electrode materials for lithium-ion batteries and supercapacitors. Chem Eur J 21:1526–1532CrossRefGoogle Scholar
  20. 20.
    Chen HC, Jiang JJ, Zhang L, Wan HZ, Qi T, Xia DD (2013) Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 5:8879–8883CrossRefGoogle Scholar
  21. 21.
    Chen HC, Chen S, Fan MQ, Chao L, Chen D, Tian GL, Shu KY (2015) Bimetallic nickel cobalt selenides: a new kind of electroactive material for high-power energy storage. J Mater Chem A 3:23653–23659CrossRefGoogle Scholar
  22. 22.
    Chen HC, Zhang JJ, Zhao YD, Zhang L, Guo DQ, Xia DD (2015) One-pot synthesis of porous nickel cobalt sulphides: tuning the composition for superior pseudocapacitance. J Mater Chem A 3:428–437CrossRefGoogle Scholar
  23. 23.
    Liu XB, Wu ZP, Yin YH (2017) Hierarchical NiCo2S4@PANI core/shell nanowires grown on carbon fiber with enhanced electrochemical performance for hybrid supercapacitors. Chem Eng J 323:330–339CrossRefGoogle Scholar
  24. 24.
    Chen HC, Fan MQ, Li C, Tian GL, Lv CJ, Chen D, Shu KY, Jiang JJ (2016) One-pot synthesis of hollow NiSe–CoSe nanoparticles with improved performance for hybrid supercapacitors. J Power Sources 329:314–322CrossRefGoogle Scholar
  25. 25.
    Zhai T, Xie S, Yu M, Fang P, Liang C, Lu X, Tong Y (2014) Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors. Nano Energy 8:255–263CrossRefGoogle Scholar
  26. 26.
    Lia ZY, Akhtar MS, Bui PTM, Yang OB (2017) Predominance of two dimensional (2D) Mn2O3 nanowalls thin film for high performance electrochemical supercapacitors. Chem Eng J 330:1240–1247CrossRefGoogle Scholar
  27. 27.
    Venkatachalam V, Alsalme A, Alghamdi A, Jayavel R (2015) High performance electrochemical capacitor based on MnCo2O4 nanostructured electrode. J Electroanal Chem 756:94–100CrossRefGoogle Scholar
  28. 28.
    Zhang GW, Ding F, Sang L, Wang GL, Feng MY, Ma ZP, Shao GJ (2016) Two-dimensional cobalt–manganese binary metal oxide porous nanosheets for high-performance supercapacitors. J. Solid State Electr. 20:3473–3480CrossRefGoogle Scholar
  29. 29.
    Peng T, Fang SL, Liu C, Hou XY, Yang HP, Luo RJ, Yu QH, Lu Y, Yan HL, Luo YS (2017) Hierarchical core–shell CoMn2O4@MnO2 nanoneedle arrays for high-performance supercapacitors. Dalton Trans 46:7451–7456CrossRefGoogle Scholar
  30. 30.
    Liu MT, Fu Y, Ma HW, Wang TL, Guan C, Hu KR (2016) Flower-like manganese-cobalt oxysulfide supported on Ni foam as a novel faradaic electrode with commendable performance. Electrochim Acta 191:916–922CrossRefGoogle Scholar
  31. 31.
    Chen HC, Jiang JJ, Zhang L, Xia DD, Zhao YD, Guo DQ, Qi T, Wan HZ (2014) In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. J Power Sources 254:249–257CrossRefGoogle Scholar
  32. 32.
    Chen HC, Chen S, Shao HY, Li C, Fan MQ, Chen D, Tian GL, Shu KY (2016) Hierarchical NiCo2S4 nanotube @ NiCo2S4 nanosheet arrays on Ni foam for high-performance supercapacitors. Chem Asian J 11:248–255CrossRefGoogle Scholar
  33. 33.
    Chen S, Chen HC, Li C, Fan MQ, Lv CJ, Tian GL, Shu KY (2017) Tuning the electrochemical behavior of CoxMn3-x sulfides by varying different Co/Mn ratios in supercapacitor. J Mater Sci 52:6687–6696.  https://doi.org/10.1007/s10853-017-0903-2 CrossRefGoogle Scholar
  34. 34.
    Xia C, Alshareef HN (2015) Self-templating scheme for the synthesis of nanostructured transition-metal chalcogenide electrodes for capacitive energy storage. Chem Mater 27:4661–4668CrossRefGoogle Scholar
  35. 35.
    Niu LY, Wang YD, Ruan FP, Shen C, Shan S, Xu M, Sun ZK, Li C, Liu XJ, Gong YY (2016) In situ growth of NiCo2S4 @ Ni3V2O8 on Ni foam as a binder-free electrode for asymmetric supercapacitors. J Mater Chem A 4:5669–5677CrossRefGoogle Scholar
  36. 36.
    Elshahawy AM, Li X, Zhang H, Hu Y, Ho KH, Guan C, Wang J (2017) Controllable MnCo2S4 nanostructures for high performance hybrid supercapacitors. J Mater Chem A 5:7494–7506CrossRefGoogle Scholar
  37. 37.
    Xiong SL, Chen JS, Lou XW, Zeng HC (2012) Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH) 0.11H2O and their lithium-storage properties. Adv Funct Mater 22:861–871CrossRefGoogle Scholar
  38. 38.
    Chen K, Yang F, Wang G, Yin J, Cao D (2013) Facile synthesis of porous (Co, Mn)3O4 nanowires free-standing on a Ni foam and their catalytic performance for H2O2 electroreduction. J Mater Chem A 1:1669–1676CrossRefGoogle Scholar
  39. 39.
    Zhao Y, Hu LF, Zhao SY, Wu LM (2016) Preparation of MnCo2O4@Ni(OH)2 core–shell flowers for asymmetric supercapacitor materials with ultrahigh specific capacitance. Adv Funct Mater 26:4085–4093CrossRefGoogle Scholar
  40. 40.
    Chen YM, Li Z, Lou XW (2015) General formation of MxCo3−xS4 (M = Ni, Mn, Zn) hollow tubular structures for hybrid supercapacitors. Angew Chem Int Ed 54:10521–10524CrossRefGoogle Scholar
  41. 41.
    Yu JW, Wan HZ, Jiang JJ, Ruan YJ, Miao L, Zhang L, Xia DD, Xu K (2014) Activation mechanism study of dandelion-like Co9S8 nanotubes in supercapacitors. J Electrochem Soc 161:A996–A1000CrossRefGoogle Scholar
  42. 42.
    El-Kady MF, Shao YL, Kaner RB (2016) Graphene for batteries, supercapacitors and beyond. Nat Rev Mater 1:16033CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringChina Jiliang University (CJLU)HangzhouChina
  2. 2.Institute of Materials for Energy and Environment, School of Materials Science and EngineeringQingdao UniversityQingdaoChina

Personalised recommendations