Advertisement

Journal of Materials Science

, Volume 53, Issue 8, pp 6147–6156 | Cite as

Molybdenum oxide 2-D flakes: role of thickness and annealing treatment on the optoelectronic properties of the material

  • A. Domínguez
  • A. Dutt
  • O. de Melo
  • L. Huerta
  • G. Santana
Energy materials
  • 298 Downloads

Abstract

Molybdenum oxide (MoO x ) thin films were grown by using a simple, economic and scalable DC Cressington sputtering unit. For thickness measurement with the quartz balance, during the deposition, MoO x density was set to an average value of 5.58 g/cm3 which is the mean density of the two main oxidation states, MoO2 (6.47 g/cm 3) and MoO3, (4.69 g/cm 3), respectively. Afterward, as-deposited samples were annealed in air at 400 °C for 60 min. Then onwards, X-ray diffraction (XRD), field emission scanning microscopy, atomic force microscopy (AFM), UV–visible (UV–Vis) spectroscopy and photoconductivity studies were carried out to investigate the differences appearing in the structural, morphological and optoelectronic properties of the as-deposited and annealed samples. Using AFM and SEM, it was observed a decrease in the average roughness as well in the grain size for thicker samples (after annealing), whereas contrary behavior was found for thinner samples. Presence of α-MoO3 and sub-oxide phases such as β-MoO2 and γ-Mo4O11 with predominance of MoO2 was observed before annealing. XRD and XPS analysis revealed a better crystalline structure for annealed samples in which the MoO3 phase was observed in majority. Depending on the thickness and oxidation states, the electrical behavior of the samples was found to be varied from semimetal to semiconductor. After annealing, all samples shown a semiconductor behavior, with an increase in photoconductivity response for the films with a lower band gap. The aim of the present work is to provide useful information over the control of the morphology and functionality of the thin films with a view to their use for future prospective application especially for the fabrication of hole transport layer in the new generation of solar cells.

Notes

Acknowledgements

Authors acknowledge to DGAPA PAPIIT for the Project IN107017. Also, authors are indebted to Josué Esau Romero Ibarra, Adriana Tejeda Cruz and Carlos Ramos Vilchis, for their technical support in SEM, XRD and laboratory measurements.

References

  1. 1.
    Granqvist CG (1995) Handbook of inorganic electrochromic materials. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Hinokuma K, Kishimoto A, Kudo T (1994) Coloration dynamics of spin-coated MoO3·nH2O electrochromic films fabricated from peroxo-polymolybdate solution. J Electrochem Soc 141(4):876–879.  https://doi.org/10.1149/1.2054850 CrossRefGoogle Scholar
  3. 3.
    Subbarayudu S, Madhavi V, Uthanna S (2013) Growth of MoO3 Films by RF magnetron sputtering: studies on the structural, optical, and electrochromic properties. ISRN Condens Matter Phys 2013:806374Google Scholar
  4. 4.
    Walia S, Balendhran S, Nili H, Zhuiykov S, Rosengarten G, Wang QH, Bhaskaran M, Sriram S, Strano MS, Kalantar-zadeh K (2013) Transition metal oxides—thermoelectric properties. Prog Mater Sci 58:1443–1489CrossRefGoogle Scholar
  5. 5.
    Scarminio J, Lourenco A, Gorenstein A (1997) Electrochromism and photochromism in amorphous molybdenum oxide films. Thin Solid Films 302:66–70CrossRefGoogle Scholar
  6. 6.
    Prasad AK, Kubinski DJ, Gouma PI (2003) Comparison of sol-gel and ion beam deposited MoO3 thin film gas sensors for selective ammonia detection. Sens Actuators B 93:25–30CrossRefGoogle Scholar
  7. 7.
    Gretener C, Perrenouda J, Kranza L et al (2013) Development of MoOx thin films as back contact buffer for CdTe solar cells in substrate configuration. Thin Solid Films 535:193–197CrossRefGoogle Scholar
  8. 8.
    Tong J, Wan Y, Cui J, Lim S, Song N, Lennon A (2017) Solution-processed molybdenum oxide for hole-selective contacts on crystalline silicon solar cells. Appl Surf Sci 423:139–146CrossRefGoogle Scholar
  9. 9.
    Battaglia C, Yin X, Zheng M, Sharp ID, Chen T, McDonnell S, Azcatl A, Carraro C, Ma B, Maboudian R, Wallace RM, Javey A (2014) Hole selective MoOx contact for silicon solar cells. Nano Lett 14(2):967–971CrossRefGoogle Scholar
  10. 10.
    Bullock J, Cuevas A, Allen T, Battaglia C (2014) Molybdenum oxide MoOx: a versatile hole contact for silicon solar cells. Appl Phys Lett 105:232109CrossRefGoogle Scholar
  11. 11.
    Gerling LG, Mahato S, Voz C, Alcubilla R, Puigdollers J (2015) Characterization of transition metal oxide/silicon heterojunctions for solar cell applications. Appl Sci 5:695–705CrossRefGoogle Scholar
  12. 12.
    Wrfel P (2005) Physics of solar cells, 1st edn. Wiley, Weinheim, pp 113–114CrossRefGoogle Scholar
  13. 13.
    Bullock J, Yan D, Cuevas A, Wan Y, Samundsett C (2015) n- and p-type silicon solar cells with molybdenum oxide hole contacts. Energy Proc. 77:446–450CrossRefGoogle Scholar
  14. 14.
    Alsaif MM et al (2014) Tunable plasmon resonances in two-dimensional molybdenum oxide nano flakes. Adv Mater 26:3931–3937CrossRefGoogle Scholar
  15. 15.
    Diaz-Droguett DE, Zúñiga A, Solorzano G, Fuenzalida VM (2012) Electron beam-induced structural transformations of MoO3 and MoO32x crystalline nanostructures. J Nanopart Res 14:1–9CrossRefGoogle Scholar
  16. 16.
    Fleisch TH, Zajact GW, Schreiner JO, Mains GJ (1986) An XPS study of the UV photoreduction of transition and noble metal oxides. Appl Surf Sci 26:488–497CrossRefGoogle Scholar
  17. 17.
    Grasselli RK (1999) Advances and future trends in selective oxidation and ammoxidation catalysis. Catal Today 49:141–153CrossRefGoogle Scholar
  18. 18.
    Haber J, Lalik E (1997) Catalytic properties of MoO3 revisited. Catal Today 33:119–137CrossRefGoogle Scholar
  19. 19.
    Alsaif Manal M Y A et al (2016) High-performance field effect transistors using electronic inks of 2D molybdenum oxide nanoflakes. Adv Funct Mater 26:91–100CrossRefGoogle Scholar
  20. 20.
    Chen CZ, Li Y, Tang XD (2016) Evidence of oxygen vacancy and possible intermediate gap state in layered α -MoO3 single-crystal nanobelts. Phys B Condens Matter 481:192–196CrossRefGoogle Scholar
  21. 21.
    Meyer J, Hamwi S, Kroger M, Kowalsky W, Riedl T, Kahn A (2012) Transition metal oxides for organic electronics: energetics, device physics and applications. Adv Mater 24(40):5408–5427CrossRefGoogle Scholar
  22. 22.
    McDonnell S, Azcatl A, Addou R, Gong C, Battaglia C, Chuang S, Cho K, Javey A, Wallace RM (2014) Hole contacts on transition metal dichalcogenides: interface chemistry and band alignments. ACS Nano 8(6):6265–6272CrossRefGoogle Scholar
  23. 23.
    Chuang S, Battaglia C, Azcatl A, McDonnell S, Kang JS, Yin X, Tosun M, Kapadia R, Fang H, Wallace RM, Javey A (2014) MoS2 p-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett 14(3):1337–1342CrossRefGoogle Scholar
  24. 24.
    Greiner MT, Chai L, Helander MG, Tang W-M, Lu Z-H (2012) Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies. Adv Funct Mater 22(21):4557–4568CrossRefGoogle Scholar
  25. 25.
    de Castro IA (2017) Molybdenum oxides—from fundamentals to functionality. Adv Mater Adv Mater 29:1701619CrossRefGoogle Scholar
  26. 26.
    Sian TS, Reddy GB (2005) Stoichiometric amorphous MoO3 films: a route to high performance electrochromic devices. J Appl Phys 98:026104CrossRefGoogle Scholar
  27. 27.
    Sivakumar R, Gopalakrishnan R, Jayachandran M, Sanjeeviraja C (2007) Characterization on electron beam evaporated -MoO3 thin films by the influence of substrate temperature. Curr Appl Phys 7:51–59CrossRefGoogle Scholar
  28. 28.
    Ramana CV, Julien CM (2006) Chemical and electrochemical properties of molybdenumoxide thin films prepared by reactive pulsed-laser assisted deposition. Chem Phys Lett 428:114–118CrossRefGoogle Scholar
  29. 29.
    Nirupama V, Uthanna S (2016) Investigations on morphological and electrical studies of sputtered MoO3 films. J Mater Sci Mater Electron 27:3668–3674CrossRefGoogle Scholar
  30. 30.
    Itoh T, Matsubara I, Shin W, Izu N, Nishibori M (2008) Preparation of layered organic-inorganic nanohybrid thin films of molybdenum trioxide with polyaniline derivatives for aldehyde gases sensors of several tens ppb level. Sens Actuators B 128:512–520CrossRefGoogle Scholar
  31. 31.
    Balaji M, Chandrasekaran J, Raja M, Rajesh S (2016) Structural, optical and electrical properties of Ru doped MoO3 thin films and its P–N diode application by JNS pyrolysis technique. J Mater Sci Mater Electron 27:11646–11658CrossRefGoogle Scholar
  32. 32.
    Hsu CS, Chan C-C, Huang H-T, Peng C-H, Hsu W-C (2008) Electrochromic properties of nanocrystalline MoO3 thin films. Thin Solid Films 516:4839–4844CrossRefGoogle Scholar
  33. 33.
    Chang W-C, Qi X, Kuo J-C, Lee S-C, Ng S-K, Chen D (2011) Post-deposition annealing control of phase and texture for the sputtered MoO3 films. CrystEngComm 13:5125–5132CrossRefGoogle Scholar
  34. 34.
    Hussain S, Shehzad MA, Vikraman D, Khan MF, Singh J, Choi D-C, Seo Y, Eom J, Lee W-G, Jung J (2016) Synthesis and characterization of large-area and continuous MoS2 atomic layers by RF magnetron sputtering. Nanoscale 8:4340–4347CrossRefGoogle Scholar
  35. 35.
    Subbarayudu S, Madhavi V, Uthanna S (2013) Post-deposition annealing controlled structural and optical properties of RF magnetron sputtered MoO3 films. Adv Mater Lett 4:637–642CrossRefGoogle Scholar
  36. 36.
    Nirupama V, Gunasekhar KR, Sreedhar B, Uthanna S (2010) Effect of oxygen partial pressure on the structural and optical properties of dc reactive magnetron sputtered molybdenum oxide films. Curr Appl Phys 10:272–278CrossRefGoogle Scholar
  37. 37.
    Cullity BD (1978) Elements of X-Ray diffraction, 2nd edn. Addison Wesley, LondonGoogle Scholar
  38. 38.
    Diaz-Droguett DE, Fuenzalida VM, Diaz-Espinoza MS, Solorzano G (2008) Electron beam effects on amorphous molybdenum oxide nanostructures grown by condensation in hydrogen. J Mater Sci 43:591–596.  https://doi.org/10.1007/s10853-007-1602-1 CrossRefGoogle Scholar
  39. 39.
    Sabhapathi VK, Hussain OM, Reddy PS et al (1995) Optical absorption studies in molybdenum trioxide thin films. Phys Status Solidi A 148:167–173CrossRefGoogle Scholar
  40. 40.
    Tauc J (1974) Amorphous and liquid semiconductor. Plenum Press, New YorkCrossRefGoogle Scholar
  41. 41.
    Okumu J, Koerfer F, Salinga C, Pedersen TP, Wuttig M (2006) Gasochromic switching of reactively sputtered molybdenumoxide films: a correlation between film properties and deposition pressure. Thin Solid Films 515:1327–1333CrossRefGoogle Scholar
  42. 42.
    Mohamed SH, Venkataraj S (2007) Thermal stability of amorphous molybdenum trioxide films prepared at different oxygen partial pressures by reactive DC magnetron sputtering. Vacuum 81:636–643CrossRefGoogle Scholar
  43. 43.
    Boudaoud L, Benramdane N, Desfeux R, Khelifa B, Mathieu C (2006) Structural and optical properties of MoO3 and V2O5 thin films prepared by spray pyrolysis. Catal Today 113:230–234CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en MaterialesUNAMCoyoacán, Ciudad de MéxicoMexico
  2. 2.Physics FacultyUniversity of HavanaHabanaCuba

Personalised recommendations