Advertisement

Journal of Materials Science

, Volume 53, Issue 8, pp 6135–6146 | Cite as

Continuous-porous N-doped carbon network as high-performance electrode for lithium-ion batteries

  • Walid Alkarmo
  • Farid Ouhib
  • Abdelhafid Aqil
  • Jean-Michel Thomassin
  • Bénédicte Vertruyen
  • Marie-Laure Piedboeuf
  • Nathalie Job
  • Christophe Detrembleur
  • Christine Jérôme
Energy materials
  • 435 Downloads

Abstract

Hierarchical porous N-doped carbon (NPC) is prepared by pyrolysis of poly(methyl methacrylate) (PMMA) particles decorated by graphene oxide (GO) and polypyrrole (PPy) as precursors and used as anode for lithium-ion batteries. The composite precursors with different diameter and composition (PMMA/GO/PPy-A and B) were conveniently prepared by dispersion polymerization of methyl methacrylate in the presence of graphene oxide as stabilizer in aqueous medium, followed by addition of pyrrole and its oxidative polymerization. After pyrolysis, the resulting NPC composites with hierarchically structured macro- and mesopores exhibit high surface area (289–398 m2/g) and different N-doping levels (7.46 and 4.22 wt% of nitrogen content). The NPC with the highest N-doping level (7.46 wt%) shows high reversible capacities of 831 mAh/g at 74.4 mA/g (C/5) after 50 cycles and excellent rate performances.

Notes

Acknowledgements

CERM is much indebted to BELSPO Interuniversity Attraction Poles (IAP-7/5-FS2) for financial support in the frame of “Functional Supramolecular Systems” project. C. D. is Research Director by the FRS-FNRS.

Supplementary material

10853_2017_1974_MOESM1_ESM.docx (598 kb)
Supplementary material 1 (DOCX 598 kb)

References

  1. 1.
    Armand M, Tarascon J-M (2008) Building better batteries. Nature 451:652–657CrossRefGoogle Scholar
  2. 2.
    Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRefGoogle Scholar
  3. 3.
    Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458:190–193CrossRefGoogle Scholar
  4. 4.
    Wu Z-S, Ren W, Xu L et al (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5:5463–5471CrossRefGoogle Scholar
  5. 5.
    Chen T, Pan L, Liu X, Sun Z (2013) A comparative study on electrochemical performances of the electrodes with different nanocarbon conductive additives for lithium ion batteries. Mater Chem Phys 142:345–349CrossRefGoogle Scholar
  6. 6.
    Guo X, Wang C, Chen M et al (2012) Carbon coating of Li4Ti5O12 using amphiphilic carbonaceous material for improvement of lithium-ion battery performance. J Power Sources 214:107–112CrossRefGoogle Scholar
  7. 7.
    Deng D (2015) Li-ion batteries: basics, progress, and challenges. Energy Sci Eng 3:385–418CrossRefGoogle Scholar
  8. 8.
    Inagaki M, Yang Y, Kang F (2012) Carbon nanofibers prepared via electrospinning. Adv Mater 24:2547–2566CrossRefGoogle Scholar
  9. 9.
    Li M, Carter R, Cohn AP, Pint CL (2016) Interconnected foams of helical carbon nanofibers grown with ultrahigh yield for high capacity sodium ion battery anodes. Carbon 107:109–115CrossRefGoogle Scholar
  10. 10.
    Liu X-M, dong Huang Z, woon Oh S et al (2012) Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: a review. Compos Sci Technol 72:121–144CrossRefGoogle Scholar
  11. 11.
    Qu Y, Zhang Z, Du K et al (2016) Synthesis of nitrogen-containing hollow carbon microspheres by a modified template method as anodes for advanced sodium-ion batteries. Carbon 105:103–112CrossRefGoogle Scholar
  12. 12.
    Fang Y, Lv Y, Che R et al (2013) Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. J Am Chem Soc 135:1524–1530CrossRefGoogle Scholar
  13. 13.
    Tang J, Chen G, Yang J et al (2014) Silica-assistant synthesis of three-dimensional graphene architecture and its application as anode material for lithium ion batteries. Nano Energy 8:62–70CrossRefGoogle Scholar
  14. 14.
    Strubel P, Althues H, Kaskel S (2016) Zinc-salt templating of hierarchical porous carbons for low electrolyte high energy lithium-sulfur batteries (LE-LiS). Carbon 107:705–710CrossRefGoogle Scholar
  15. 15.
    Qie L, Chen W, Wang Z et al (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24:2047–2050CrossRefGoogle Scholar
  16. 16.
    Kim MG, Cho J (2009) Reversible and high-capacity nanostructured electrode materials for li-ion batteries. Adv Func Mater 19:1497–1514CrossRefGoogle Scholar
  17. 17.
    Sun D, Yang J, Yan X (2015) Hierarchically porous and nitrogen, sulfur-codoped graphene-like microspheres as a high capacity anode for lithium ion batteries. Chem Commun 51:2134–2137CrossRefGoogle Scholar
  18. 18.
    Deng D, Pan X, Yu L et al (2011) Toward N-doped graphene via solvothermal synthesis. Chem Mater 23:1188–1193CrossRefGoogle Scholar
  19. 19.
    Panchakarla LS, Subrahmanyam KS, Saha SK et al (2009) Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv Mater 21:4726–4730Google Scholar
  20. 20.
    Zhou X, Tang J, Yang J et al (2013) Seaweed-like porous carbon from the decomposition of polypyrrole nanowires for application in lithium ion batteries. J Mater Chem A 1:5037–5044CrossRefGoogle Scholar
  21. 21.
    Ma C, Shao X, Cao D (2012) Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. J Mater Chem 22:8911–8915CrossRefGoogle Scholar
  22. 22.
    Liu X, Zhang J, Guo S, Pinna N (2016) Graphene/N-doped carbon sandwiched nanosheets with ultrahigh nitrogen doping for boosting lithium-ion batteries. J Mater Chem A 4:1423–1431CrossRefGoogle Scholar
  23. 23.
    Thomassin J-M, Trifkovic M, Alkarmo W et al (2014) Poly(methyl methacrylate)/graphene oxide nanocomposites by a precipitation polymerization process and their dielectric and rheological characterization. Macromolecules 47:2149–2155CrossRefGoogle Scholar
  24. 24.
    Zhang D, Dong Q-Q, Wang X et al (2013) Preparation of a three-dimensional ordered macroporous carbon nanotube/polypyrrole composite for supercapacitors and diffusion modeling. J Phys Chem C 117:20446–20455CrossRefGoogle Scholar
  25. 25.
    Muylaert I, Verberckmoes A, De Decker J, Van Der Voort P (2012) Ordered mesoporous phenolic resins: highly versatile and ultra stable support materials. Adv Coll Interface Sci 175:39–51CrossRefGoogle Scholar
  26. 26.
    Bulusheva LG, Okotrub AV, Kurenya AG et al (2011) Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon 49:4013–4023CrossRefGoogle Scholar
  27. 27.
    Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50:3210–3228CrossRefGoogle Scholar
  28. 28.
    Li D, Ding L-X, Chen H et al (2014) Novel nitrogen-rich porous carbon spheres as a high-performance anode material for lithium-ion batteries. J Mater Chem A 2:16617–16622CrossRefGoogle Scholar
  29. 29.
    Tripathi PK, Liu M, Zhao Y et al (2014) Enlargement of uniform micropores in hierarchically ordered micro-mesoporous carbon for high level decontamination of bisphenol A. J Mater Chem A 2:8534–8544CrossRefGoogle Scholar
  30. 30.
    Tripathi PK, Gan L, Liu M et al (2014) One-pot assembly of silica@two polymeric shells for synthesis of hollow carbon porous nanospheres: adsorption of bisphenol A. Mater Lett 120:108–110CrossRefGoogle Scholar
  31. 31.
    Ferrari AC, Meyer JC, Scardaci V et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401CrossRefGoogle Scholar
  32. 32.
    Song R, Song H, Zhou J et al (2012) Hierarchical porous carbon nanosheets and their favorable high-rate performance in lithium ion batteries. J Mater Chem 22:12369–12374CrossRefGoogle Scholar
  33. 33.
    Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107CrossRefGoogle Scholar
  34. 34.
    Li X, Zhu X, Zhu Y et al (2014) Porous nitrogen-doped carbon vegetable-sponges with enhanced lithium storage performance. Carbon 69:515–524CrossRefGoogle Scholar
  35. 35.
    Wang G, Shen X, Yao J, Park J (2009) Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47:2049–2053CrossRefGoogle Scholar
  36. 36.
    Liu Y, Liu X, Chen J et al (2008) 3D bio-nanofibrous PPy/SIBS mats as platforms for cell culturing. Chem Commun.  https://doi.org/10.1039/b804283g Google Scholar
  37. 37.
    Omichi K, Ramos-Sanchez G, Rao R et al (2015) Origin of excess irreversible capacity in lithium-ion batteries based on carbon nanostructures. J Electrochem Soc 162:A2106–A2115CrossRefGoogle Scholar
  38. 38.
    Piedboeuf M-LC, Léonard AF, Deschamps FL, Job N (2016) Carbon xerogels as model materials: toward a relationship between pore texture and electrochemical behavior as anodes for lithium-ion batteries. J Mater Sci 51:4358–4370.  https://doi.org/10.1007/s10853-016-9748-3 CrossRefGoogle Scholar
  39. 39.
    Jiang Z-J, Jiang Z (2014) Fabrication of nitrogen-doped holey graphene hollow microspheres and their use as an active electrode material for lithium ion batteries. ACS Appl Mater Interfaces 6:19082–19091CrossRefGoogle Scholar
  40. 40.
    Liu C, Liu X, Tan J et al (2017) Nitrogen-doped graphene by all-solid-state ball-milling graphite with urea as a high-power lithium ion battery anode. J Power Sources 342:157–164CrossRefGoogle Scholar
  41. 41.
    Nan D, Huang Z-H, Lv R et al (2014) Nitrogen-enriched electrospun porous carbon nanofiber networks as high-performance free-standing electrode materials. J Mater Chem A 2:19678–19684CrossRefGoogle Scholar
  42. 42.
    Tan G, Bao W, Yuan Y et al (2017) Freestanding highly defect nitrogen-enriched carbon nanofibers for lithium ion battery thin-film anodes. J Mater Chem A 5:5532–5540CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Education and Research on Macromolecules (CERM), CESAM-RUUniversity of LiègeLiègeBelgium
  2. 2.GREENMAT-LCIS, CESAM-RU, Chemistry DepartmentUniversity of LiègeLiègeBelgium
  3. 3.Department of Chemical Engineering – Nanomaterials, Catalysis, ElectrochemistryUniversity of LiègeLiègeBelgium

Personalised recommendations