Advertisement

Journal of Materials Science

, Volume 53, Issue 8, pp 6124–6134 | Cite as

Nitrogen-doped graphene-supported molybdenum dioxide electrocatalysts for oxygen reduction reaction

  • Pingwei Li
  • Xuying Yin
  • Ya Yan
  • Ke Zhan
  • Junhe Yang
  • Bin Zhao
  • Jianqiang Li
Energy materials
  • 327 Downloads

Abstract

A simple one-step pyrolysis strategy has been developed to prepare molybdenum dioxide supported on nitrogen-doped graphene (MoO2/NG) as electrocatalyst for oxygen reduction reactions (ORR). Homogeneous anchoring of MoO2 nanoparticles on nitrogen-doped graphene was achieved for the composite synthesized at 500 °C (MoO2/NG-500). For the first time, the MoO2/NG composite manifests considerable electrocatalytic activity for ORR in alkaline solution, with the onset potential of 0.91 V and the peak potential of 0.73 V. Furthermore, the MoO2/NG catalyst outperforms commercial Pt/C catalyst in terms of the electrochemical durability for ORR. The facile fabrication, reasonable ORR activity and excellent stability endow our MoO2/NG catalyst with great promise in application of cost-effective fuel cells.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51605293, 51702213), Natural Science Foundation of Shanghai (16ZR1423500), Shanghai Pujiang Program (17PJ1406900) and The Program for Associate Professor of Special Appointment (Young Eastern Scholar) at Shanghai Institutions of Higher Learning (QD2016013).

Supplementary material

10853_2017_1972_MOESM1_ESM.doc (13.4 mb)
Supplementary material 1 (DOC 13682 kb)

References

  1. 1.
    Wang S, Jiang SP (2017) Prospects of fuel cell technologies. Natl Sci Rev 2:163–166Google Scholar
  2. 2.
    Cao R, Lee JS, Liu M, Cho J (2012) Recent progress in non-precious catalysts for metal–air batteries. Adv Energy Mater 2(7):816–829CrossRefGoogle Scholar
  3. 3.
    Hardin WG, Slanac DA, Wang X, Dai S, Johnston KP, Stevenson KJ (2013) Highly active, nonprecious metal perovskite electrocatalysts for bifunctional metal–air battery electrodes. J Phys Chem Lett 4(8):1254–1259CrossRefGoogle Scholar
  4. 4.
    Li J, Tang H, Chen L, Chen R, Pan M, Jiang SP (2013) Highly ordered and periodic mesoporous nafion membranes via colloidal silica mediated self-assembly for fuel cells. Chem Commun 49:6537CrossRefGoogle Scholar
  5. 5.
    Bartak DE, Kazee B, Shimazu K, Kuwana T (1986) Electrodeposition and characterization of platinum microparticles in poly(4-vinylpyridine) film electrodes. Anal Chem 58(13):2756–2761CrossRefGoogle Scholar
  6. 6.
    Uhm S, Jeong B, Lee J (2011) A facile route for preparation of non-noble CNF cathode catalysts in alkaline ethanol fuel cells. Electrochim Acta 56(25):9186–9190CrossRefGoogle Scholar
  7. 7.
    Yang L, Jiang S, Zhao Y, Zhu L, Chen S, Wang X, Wu Q, Ma J, Ma Y, Hu Z (2011) Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew Chem 50(31):7132–7135CrossRefGoogle Scholar
  8. 8.
    Ranjbar SN, Paraknowitsch JP, Goebel C, Thomas A, Strasser P (2014) Noble metal-free electrocatalysts with enhanced ORR performance by task specific functionalization of activated carbon using ionic liquid precursor systems. J Am Chem Soc 136(41):14486CrossRefGoogle Scholar
  9. 9.
    Zhu YP, Guo C, Zheng Y, Qiao SZ (2017) Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc Chem Res 50(4):915–923CrossRefGoogle Scholar
  10. 10.
    Yan D, Li Y, Huo J, Chen R, Dai L, Wang S (2017) Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv Mater.  https://doi.org/10.1002/adma.201606459 Google Scholar
  11. 11.
    Xu Z, Zheng QS, Chen GH (2007) Elementary building blocks of graphene-nanoribbon-based electronic devices. Appl Phys Lett 90(22):223115–223115-3Google Scholar
  12. 12.
    Borini S, White R, Wei D, Astley M, Haque S, Spigone E, Harris N, Kivioja J, Ryhänen T (2013) Ultrafast graphene oxide humidity sensors. ACS Nano 7(12):11166–11173CrossRefGoogle Scholar
  13. 13.
    Zhang LL, Zhao X, Stoller MD, Zhu Y, Ji H, Murali S, Wu Y, Perales S, Clevenger B, Ruoff RS (2012) Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett 12(4):1806CrossRefGoogle Scholar
  14. 14.
    Yoo E, Kim J, Hosono E, Zhou HS, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8(8):2277CrossRefGoogle Scholar
  15. 15.
    Qu L, Liu Y, Baek JB, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3):1321CrossRefGoogle Scholar
  16. 16.
    Xiong B, Zhou Y, Zhao Y, Wang J, Chen X, O’Hayre R, Shao Z (2013) The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation. Carbon 52(2):181–192CrossRefGoogle Scholar
  17. 17.
    Vinayan BP, Nagar R, Rajalakshmi N, Ramaprabhu S (2012) Novel platinum–cobalt alloy nanoparticles dispersed on nitrogen-doped graphene as a cathode electrocatalyst for PEMFC applications. Adv Funct Mater 22(16):3519–3526CrossRefGoogle Scholar
  18. 18.
    Li J, Wang N, Zhao Y, Ding Y, Guan L (2011) MnO2 nanoflakes coated on multi-walled carbon nanotubes for rechargeable lithium-air batteries. Electrochem Commun 13(7):698–700CrossRefGoogle Scholar
  19. 19.
    Cao Y, Wei Z, He J, Zang J, Zhang Q, Zheng M, Dong Q (2012) α-MnO2 nanorods grown in situ on graphene as catalysts for Li–O2 batteries with excellent electrochemical performance. Energy Environ Sci 5(12):9765–9768CrossRefGoogle Scholar
  20. 20.
    Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10(10):780–786CrossRefGoogle Scholar
  21. 21.
    Xu J, Gao P, Zhao TS (2012) Non-precious Co3O4 nano-rod electrocatalyst for oxygen reduction reaction in anion-exchange membrane fuel cells. Energy Environ Sci 5(1):5333–5339CrossRefGoogle Scholar
  22. 22.
    Liang Y, Wang H, Zhou J, Li Y, Wang J, Regier T, Dai H (2012) Covalent hybrid of spinel manganese–cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J Am Chem Soc 134(7):3517–3523CrossRefGoogle Scholar
  23. 23.
    Higgins D, Hassan FM, Min HS, Choi JY, Hoque MA, Dong UL, Chen Z (2015) Shape-controlled octahedral cobalt disulfide nanoparticles supported on nitrogen and sulfur-doped graphene/carbon nanotube composites for oxygen reduction in acidic electrolyte. J Mater Chem A 3(12):6340–6350CrossRefGoogle Scholar
  24. 24.
    Chen B, Li R, Ma G, Gou X, Zhu Y, Xia Y (2015) Cobalt sulfide/N, S codoped porous carbon core–shell nanocomposites as superior bifunctional electrocatalysts for oxygen reduction and evolution reactions. Nanoscale 7(48):20674CrossRefGoogle Scholar
  25. 25.
    Liu Y, Zhao B, Zhang Y, Zhang H, Zhan K, Yang J, Li J (2016) Co-supported catalysts on nitrogen and sulfur co-doped vertically-aligned carbon nanotubes for oxygen reduction reaction. RSC Adv 6(39):32676–32684CrossRefGoogle Scholar
  26. 26.
    Sun Y, Hu X, Luo W, Huang Y (2011) Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries. ACS Nano 5(9):7100–7107CrossRefGoogle Scholar
  27. 27.
    Tan X, Cui C, Wu S, Qiu B, Wang L, Zhang J (2017) Nitrogen-doped mesoporous carbon encapsulated MoO2 nanobelts as a high capacity and stable host for lithium-ion storage. Chem-Asian J 12(1):36CrossRefGoogle Scholar
  28. 28.
    Li X, Jiang Y, Jia L, Wang C (2016) MoO2 nanoparticles on reduced graphene oxide/polyimide-carbon nanotube film as efficient hydrogen evolution electrocatalyst. J Power Sources 304:146–154CrossRefGoogle Scholar
  29. 29.
    Jin Y, Wang H, Li J, Yue X, Han Y, Shen PK, Cui Y (2016) Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting. Adv Mater 28(19):3785CrossRefGoogle Scholar
  30. 30.
    Wu L, Wang X, Sun Y, Liu Y, Li J (2015) Flawed MoO2 belts transformed from MoO3 on a graphene template for the hydrogen evolution reaction. Nanoscale 7(16):7040–7044CrossRefGoogle Scholar
  31. 31.
    Yan Z, Xie J, Jing J, Zhang M, Wei W, Yin S (2012) MoO2 nanocrystals down to 5 nm as Pt electrocatalyst promoter for stable oxygen reduction reaction. Int J Hydrog Energy 37(21):15948–15955CrossRefGoogle Scholar
  32. 32.
    Elezović NR, Babić BM, Radmilović VR, Gojković SL, Krstajić NV, Vračar LM (2008) Pt/C doped by MoOx as the electrocatalyst for oxygen reduction and methanol oxidation. J Power Sources 175(1):250–255CrossRefGoogle Scholar
  33. 33.
    Niu W, Li L, Liu X, Wang N, Liu J, Zhou W, Tang Z, Chen S (2015) Mesoporous N-doped carbons prepared with thermally removable nanoparticle templates: an efficient electrocatalyst for oxygen reduction reaction. J Am Chem Soc 137(16):5555–5562CrossRefGoogle Scholar
  34. 34.
    Yang S, Song X, Zhang P, Gao L (2015) Heating-rate-induced porous α-Fe2O3 with controllable pore size and crystallinity grown on graphene for supercapacitors. ACS Appl Mater Interfaces 7(1):75–79CrossRefGoogle Scholar
  35. 35.
    Zhou W, Hou D, Sang Y, Yao S, Zhou J, Li G, Li L, Liu H, Chen S (2014) MoO2 nanobelts@nitrogen self-doped MoS2 nanosheets as effective electrocatalysts for hydrogen evolution reaction. J Mater Chem A 2(29):11358–11364CrossRefGoogle Scholar
  36. 36.
    Zhao C, Yu C, Zhang M, Huang H, Li S, Han X, Liu Z, Yang J, Xiao W, Liang J (2017) Ultrafine MoO2-carbon microstructures enable ultralong-Life power-type sodium ion storage by enhanced pseudocapacitance. Adv Energy Mater.  https://doi.org/10.1002/aenm.201602880 Google Scholar
  37. 37.
    Hu K, Tao L, Liu D, Huo J, Wang S (2016) Sulfur-doped Fe/N/C nanosheets as highly-efficient electrocatalysts for oxygen reduction reaction. ACS Appl Mater Interfaces 8(30):19379CrossRefGoogle Scholar
  38. 38.
    Arrigo R, Hävecker M, Schlögl R, Su DS (2008) Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes. Chem Commun 40(40):4891CrossRefGoogle Scholar
  39. 39.
    Sharifi T, Hu G, Jia X, Wågberg T (2012) Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes. ACS Nano 6(10):8904–8912CrossRefGoogle Scholar
  40. 40.
    Chandrasekaran S, Kim EJ, Jin SC, Bowen CR, Rajagopalan B, Adamaki V, Misra RDK, Hur SH (2016) High performance bifunctional electrocatalytic activity of a reduced graphene oxide–molybdenum oxide hybrid catalyst. J Mater Chem A 4(34):13271CrossRefGoogle Scholar
  41. 41.
    Xia X, Wang Y, Wang D, Zhang Y, Fan Z, Tu J, Zhang H, Fan HJ (2016) Atomic-layer-deposited iron oxide on arrays of metal/carbon spheres and their application for electrocatalysis. Nano Energy 20:244–253CrossRefGoogle Scholar
  42. 42.
    Yang L, Yu J, Wei Z, Li G, Cao L, Zhou W, Chen S (2017) Co–N-doped MoO2 nanowires as efficient electrocatalysts for the oxygen reduction reaction and hydrogen evolution reaction. Nano Energy 41:772–779CrossRefGoogle Scholar
  43. 43.
    Mao S, Wen Z, Huang T, Hou Y, Chen J (2014) High-performance bi-functional electrocatalysts of 3D crumpled graphene–cobalt oxide nanohybrids for oxygen reduction and evolution reactions. Energy Environ Sci 7(2):609–616CrossRefGoogle Scholar
  44. 44.
    Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J (2016) Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science (New York, NY) 351(6271):361CrossRefGoogle Scholar
  45. 45.
    Wu ZS, Yang S, Sun Y, Parvez K, Feng X, Mullen K (2012) 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134(22):9082–9085CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
  2. 2.Shanghai Innovation Institute for MaterialsShanghaiChina
  3. 3.National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process EngineeringChinese Academy of SciencesBeijingChina

Personalised recommendations