Journal of Materials Science

, Volume 53, Issue 8, pp 6116–6123 | Cite as

Hierarchical core–shell Co3O4/graphene hybrid fibers: potential electrodes for supercapacitors

  • Weicheng Wang
  • Yuliang Yuan
  • Jie Yang
  • Lu Meng
  • Haichao Tang
  • Yujia Zeng
  • ZhiZhen Ye
  • Jianguo Lu
Energy materials


Toward the fast development of portable devices, the lightweight, flexible, and even wearable energy storage devices are very required. One effective device is the graphene-based fiber supercapacitors. Here we present the core–shell Co3O4/graphene hybrid fibers by hydrothermal method for the first time, where Co3O4 directly grows on the surface of graphene forming excellent hierarchical nanostructures. The combination of the Co3O4 shell and graphene core evidently improves the capacitive behaviors of the hybrid fibers. The Co3O4/graphene hybrid fibers are lightweight, flexible, and wearable, showing ultrahigh electrochemical performances such as large specific capacitance of 236.8 F g−1 (196.3 mF cm−2) at current density of 0.2 A g−1, outstanding rate capability, and excellent cycling stability (72.7% retention after 10000 cycles). The high electrochemical performances reveal the great potential of core–shell Co3O4/graphene hybrid fibers as electrodes in the energy storage system.



This work was financially supported by the National Natural Science Foundation of China under Grant No. 51372002 and Shenzhen Science and Technology Project under Grant No. JCYJ20150324141711644.

Supplementary material

10853_2017_1971_MOESM1_ESM.docx (239 kb)
Supplementary material 1 (DOCX 239 kb)


  1. 1.
    Zhao Y, Zhang Y, Sun H, Dong XL, Cao JY, Wang L, Xu YF, Ren J, Hwang YN, Son IH, Huang XL, Wang YG, Peng HS (2016) A self-healing aqueous lithium-ion battery. Angew Chem Int Ed 55(46):14382–14386CrossRefGoogle Scholar
  2. 2.
    Meng Y, Zhao Y, Hu C, Cheng H, Hu Y, Zhang Z, Shi G, Qu L (2013) All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater 25(16):2326–2331CrossRefGoogle Scholar
  3. 3.
    Hu L, Wu H, Cui Y (2010) Printed energy storage devices by integration of electrodes and separators into single sheets of paper. Appl Phys Lett 96(18):183502CrossRefGoogle Scholar
  4. 4.
    Hu Y, Cheng H, Zhao F, Chen N, Jiang L, Feng Z, Qu L (2014) All-in-one graphene fiber supercapacitor. Nanoscale 6(12):6448–6451CrossRefGoogle Scholar
  5. 5.
    Nagaraju G, Sekhar SC, Yu JS (2017) Utilizing waste cable wires for high-performance fiber-based hybrid supercapacitors: an effective approach to electronic-waste management. Adv Energy Mater 7(21):1702201CrossRefGoogle Scholar
  6. 6.
    Lee M-T, Chang J-K, Hsieh Y-T, Tsai W-T (2008) Annealed Mn–Fe binary oxides for supercapacitor applications. J Power Sources 185(2):1550–1556CrossRefGoogle Scholar
  7. 7.
    Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502CrossRefGoogle Scholar
  8. 8.
    Lee G, Kim D, Yun J, Ko Y, Cho J, Ha JS (2014) High-performance all-solid-state flexible micro-supercapacitor arrays with layer-by-layer assembled MWNT/MnO(x) nanocomposite electrodes. Nanoscale 6(16):9655–9664CrossRefGoogle Scholar
  9. 9.
    El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074):1326–1330CrossRefGoogle Scholar
  10. 10.
    Yuan LY, Lu XH, Xiao X, Zhai T, Dai JJ, Zhang FC, Hu B, Wang X, Gong L, Chen J, Hu CG, Tong YX, Zhou J, Wang ZL (2012) Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano 6(1):656–661CrossRefGoogle Scholar
  11. 11.
    Chen Z, Augustyn V, Wen J, Zhang Y, Shen M, Dunn B, Lu Y (2011) High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv Mater 23(6):791–795CrossRefGoogle Scholar
  12. 12.
    Ren J, Li L, Chen C, Chen X, Cai Z, Qiu L, Wang Y, Zhu X, Peng H (2013) Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv Mater 25(8):1155–1159CrossRefGoogle Scholar
  13. 13.
    Jost K, Stenger D, Perez CR, McDonough JK, Lian K, Gogotsi Y, Dion G (2013) Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics. Energy Environ Sci 6(9):2698–2705CrossRefGoogle Scholar
  14. 14.
    Chang Y, Han G, Fu D, Liu F, Li M, Li Y (2014) Larger-scale fabrication of N-doped graphene-fiber mats used in high-performance energy storage. J Power Sources 252:113–121CrossRefGoogle Scholar
  15. 15.
    Yu D, Goh K, Wang H, Wei L, Jiang W, Zhang Q, Dai L, Chen Y (2014) Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat Nanotechnol 9(7):555–562CrossRefGoogle Scholar
  16. 16.
    Qu G, Cheng J, Li X, Yuan D, Chen P, Chen X, Wang B, Peng H (2016) A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv Mater 28(19):3646–3652CrossRefGoogle Scholar
  17. 17.
    Lee JA, Shin MK, Kim SH, Cho HU, Spinks GM, Wallace GG, Lima MD, Lepro X, Kozlov ME, Baughman RH, Kim SJ (2013) Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat Commun 4:1970Google Scholar
  18. 18.
    Zhao Y, Jiang CC, Hu CG, Dong ZL, Xue JL, Meng YN, Zheng N, Chen PW, Qu LT (2013) Large-scale spinning assembly of neat, morphology-defined, graphene-based hollow fibers. ACS Nano 7(3):2406–2412CrossRefGoogle Scholar
  19. 19.
    Chen S, Ma W, Cheng Y, Weng Z, Sun B, Wang L, Chen W, Li F, Zhu M, Cheng H-M (2015) Scalable non-liquid-crystal spinning of locally aligned graphene fibers for high-performance wearable supercapacitors. Nano Energy 15:642–653CrossRefGoogle Scholar
  20. 20.
    Xu Z, Gao C (2011) Graphene chiral liquid crystals and macroscopic assembled fibres. Nat Commun 2:571CrossRefGoogle Scholar
  21. 21.
    Meng Y, Wang K, Zhang Y, Wei Z (2013) Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors. Adv Mater 25(48):6985–6990CrossRefGoogle Scholar
  22. 22.
    Fan Z, Yan J, Wei T, Zhi L, Ning G, Li T, Wei F (2011) Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21(12):2366–2375CrossRefGoogle Scholar
  23. 23.
    Zhi M, Manivannan A, Meng F, Wu N (2012) Highly conductive electrospun carbon nanofiber/MnO2 coaxial nano-cables for high energy and power density supercapacitors. J Power Sources 208:345–353CrossRefGoogle Scholar
  24. 24.
    Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1(1):107–131CrossRefGoogle Scholar
  25. 25.
    Liu J, Jiang J, Cheng C, Li H, Zhang J, Gong H, Fan HJ (2011) Co3O4 Nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv Mater 23(18):2076–2081CrossRefGoogle Scholar
  26. 26.
    Tang W, Hou YY, Wang XJ, Bai Y, Zhu YS, Sun H, Yue YB, Wu YP, Zhu K, Holze R (2012) A hybrid of MnO2 nanowires and MWCNTs as cathode of excellent rate capability for supercapacitors. J Power Sources 197:330–333CrossRefGoogle Scholar
  27. 27.
    Zhang J, Yang X, He Y, Bai Y, Kang L, Xu H, Shi F, Lei Z, Liu Z-H (2016) δ-MnO2/holey graphene hybrid fiber for all-solid-state supercapacitor. J Mater Chem A 4(23):9088–9096CrossRefGoogle Scholar
  28. 28.
    Zheng B, Huang T, Kou L, Zhao X, Gopalsamy K, Gao C (2014) Graphene fiber-based asymmetric micro-supercapacitors. J Mater Chem A 2(25):9736–9743CrossRefGoogle Scholar
  29. 29.
    Chen Q, Meng Y, Hu C, Zhao Y, Shao H, Chen N, Qu L (2014) MnO2-modified hierarchical graphene fiber electrochemical supercapacitor. J Power Sources 247:32–39CrossRefGoogle Scholar
  30. 30.
    Ma W, Chen S, Yang S, Chen W, Cheng Y, Guo Y, Peng S, Ramakrishna S, Zhu M (2016) Hierarchical MnO2 nanowire/graphene hybrid fibers with excellent electrochemical performance for flexible solid-state supercapacitors. J Power Sources 306:481–488CrossRefGoogle Scholar
  31. 31.
    Xiang C, Li M, Zhi M, Manivannan A, Wu N (2013) A reduced graphene oxide/Co3O4 composite for supercapacitor electrode. J Power Sources 226:65–70CrossRefGoogle Scholar
  32. 32.
    Li M, Cushing SK, Zhou X, Guo S, Wu N (2012) Fingerprinting photoluminescence of functional groups in graphene oxide. J Mater Chem 22(44):23374CrossRefGoogle Scholar
  33. 33.
    Sun H, Sun X, Hu T, Yu M, Lu F, Lian J (2014) Graphene-wrapped mesoporous cobalt oxide hollow spheres anode for high-rate and long-life lithium ion batteries. J Phys Chem C 118(5):2263–2272CrossRefGoogle Scholar
  34. 34.
    Wang S, Liu N, Su J, Li L, Long F, Zou Z, Jiang X, Gao Y (2017) Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs. ACS Nano 11(2):2066–2074CrossRefGoogle Scholar
  35. 35.
    Zhao X, Zheng B, Huang T, Gao C (2015) Graphene-based single fiber supercapacitor with a coaxial structure. Nanoscale 7(21):9399–9404CrossRefGoogle Scholar
  36. 36.
    Chen S, Ma W, Xiang H, Cheng Y, Yang S, Weng W, Zhu M (2016) Conductive, tough, hydrophilic poly(vinyl alcohol)/graphene hybrid fibers for wearable supercapacitors. J Power Sources 319:271–280CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Silicon Materials, School of Materials Science and EngineeringZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.Shenzhen Key Laboratory of Laser Engineering, College of Optoelectronic EngineeringShenzhen UniversityShenzhenPeople’s Republic of China

Personalised recommendations