Journal of Materials Science

, Volume 53, Issue 8, pp 6021–6032 | Cite as

In situ analysis of damage evolution in an Al/\(\hbox {Al}_{2}\hbox {O}_{3}\) MMC under tensile load by synchrotron X-ray refraction imaging

  • J. Nellesen
  • R. Laquai
  • B. R. Müller
  • A. Kupsch
  • M. P. Hentschel
  • N. B. Anar
  • E. Soppa
  • W. Tillmann
  • G. Bruno


The in situ analysis of the damage evolution in a metal matrix composite (MMC) using synchrotron X-ray refraction radiography (SXRR) is presented. The investigated material is an Al alloy (6061)/10 vol\(\%\) \(\hbox {Al}_{2}\hbox {O}_{3}\) MMC after T6 heat treatment. In an interrupted tensile test the gauge section of dog bone-shaped specimens is imaged in different states of tensile loading. On the basis of the SXRR images, the relative change of the specific surface (proportional to the amount of damage) in the course of tensile loading was analyzed. It could be shown that the damage can be detected by SXRR already at a stage of tensile loading, in which no observation of damage is possible with radiographic absorption-based imaging methods. Moreover, the quantitative analysis of the SXRR images reveals that the amount of damage increases homogeneously by an average of 25% with respect to the initial state. To corroborate the experimental findings, the damage distribution was imaged in 3D after the final tensile loading by synchrotron X-ray refraction computed tomography (SXRCT) and absorption-based synchrotron X-ray computed tomography (SXCT). It could be evidenced that defects and damages cause pronounced indications in the SXRCT images.



We would like to express our gratitude to Wolfgang Czayka and Carsten Müller (both affiliated to the LWT/TU Dortmund University). Wolfgang Czayka prepared the specimens, and Carsten Müller engineered and modified the tensile test rig. For assistance during beamtime at the BAMline we would also like to thank Ralf Britzke and Thomas Wolk (BAM). Moreover, we thank HZB for the allocation of synchrotron radiation beamtime and thankfully acknowledge the financial support by HZB. The financial support of the German Research Foundation (DFG) in the frame of the projects TI 343/84-1 and SO 520/4-1 is gratefully acknowledged as well.


  1. 1.
    Mortensen A, Llorca J (2010) Metal matrix composites. Annu Rev Mater Res 40(1):243–270CrossRefGoogle Scholar
  2. 2.
    Buffière JY, Proudhon H, Ferrie E, Ludwig W, Maire E, Cloetens P (2005) Three dimensional imaging of damage in structural materials using high resolution micro-tomography. Nucl Instrum Methods Phys Res B 238(1–4):75–82CrossRefGoogle Scholar
  3. 3.
    Clyne TW, Withers PJ (1993) An introduction to metal matrix composites: Cambridge solid state science series. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. 4.
    Garces G, Bruno G, Wanner A (2007) Load transfer in short fibre reinforced metal matrix composites. Acta Mater 55(16):5389–5400CrossRefGoogle Scholar
  5. 5.
    Garces G, Bruno G, Wanner A (2006) Residual stresses in random-planar aluminium/Saffil® short-fibre composites deformed in different loading modes. Int J Mater Res 97(10):1312–1319CrossRefGoogle Scholar
  6. 6.
    Garces G, Bruno G, Wanner A (2006) Residual stresses in deformed random-planar aluminium/Saffil®short-fibre composites. Mater Sci Eng A 417(1–2):73–81CrossRefGoogle Scholar
  7. 7.
    Garces G, Bruno G, Wanner A (2006) Internal stress evolution in a random-planar short fiber aluminum composite. Scr Mater 55(2):163–166CrossRefGoogle Scholar
  8. 8.
    Cabeza S, Mishurova T, Bruno G, Garcés G, Requena G (2016) The role of reinforcement orientation on the damage evolution of AlSi12CuMgNi + 15% \(\text{Al}_2\text{O}_3\) under compression. Scr Mater 122:115–118CrossRefGoogle Scholar
  9. 9.
    Requena G, Garcés G, Asghar Z, Marks E, Staron P, Cloetens P (2011) The effect of the connectivity of rigid phases on strength of Al–Si alloys. Adv Eng Mater 13(8):674–684CrossRefGoogle Scholar
  10. 10.
    Requena G, Degischer H (2006) Creep behaviour of unreinforced and short fibre reinforced AlSi12CuMgNi piston alloy. Mater Sci Eng A 420(1–2):265–275CrossRefGoogle Scholar
  11. 11.
    Requena GC, Degischer HP (2005) Effects of particle reinforcement on creep behaviour of AlSi1MgCu. Zeitschrift für Metallkunde 96(7):807–813CrossRefGoogle Scholar
  12. 12.
    Russell SS, Sutton MA, Chen HS (1989) Image correlation quantitative NDE of impact and fabrication damage in a glass fiber reinforced composite system. J Mater Eval 47(5):550–558Google Scholar
  13. 13.
    Maire E, Withers PJ (2014) Quantitative X-ray tomography. Int Mater Rev 59(1):1–43CrossRefGoogle Scholar
  14. 14.
    Stock SR (2009) Microcomputed tomography: methodology and applications. CRC Press, Boca RatonGoogle Scholar
  15. 15.
    Reimers W, Pyzalla AR, Schreyer A, Clemens H (2008) Neutrons and synchrotron radiation in engineering materials science. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  16. 16.
    Kriszt B, Foroughi B, Faure K, Degischer H (2000) Behaviour of aluminium foam under uniaxial compression. Mater Sci Technol 16:792–796CrossRefGoogle Scholar
  17. 17.
    Babout L, Maire E, Buffière J, Fougères R (2001) Characterization by X-ray computed tomography of decohesion, porosity growth and coalescence in model matrix composites. Acta Mater 49:2055–2063CrossRefGoogle Scholar
  18. 18.
    Ohgaki T, Toda H, Kobayashi M, Uesugi K, Niinomi M, Akahori T, Kobayash T, Makii K, Aruga Y (2006) In situ observations of compressive behaviour of aluminium foams by local tomography using high-resolution X-rays. Philos Mag 86(28):4417–4438CrossRefGoogle Scholar
  19. 19.
    Khor KH, Buffière JY, Ludwig W, Toda H, Ubhi HS, Gregson PJ, Sinclair I (2004) In situ high resolution synchrotron X-ray tomography of fatigue crack closure micromechanisms. J Phys Condens Matter 16:3511–3515CrossRefGoogle Scholar
  20. 20.
    Buffière JY, Maire E, Verdu C, Cloetens P, Pateyron M, Peix G, Baruchel J (1997) Damage assessment in an Al/SiC composite during monotonic tensile tests using synchrotron X-ray microtomography. Mater Sci Eng A A234–236:633–635CrossRefGoogle Scholar
  21. 21.
    Adrien J, Maire E, Gimenez N, Sauvant-Moynot V (2007) Experimental study of the compression behaviour of syntactic foams by in situ X-ray tomography. Acta Mater 55(5):1667–1679CrossRefGoogle Scholar
  22. 22.
    Ferrie E, Buffiere J, Ludwig W, Gravouil A, Edwards L (2006) Fatigue crack propagation: In situ visualization using X-ray microtomography and 3D simulation using the extended finite element method. Acta Mater 54:1111–1122CrossRefGoogle Scholar
  23. 23.
    Borbély A, Biermann H, Hartmann O, Buffière J (2003) The influence of the free surface on the fracture of alumina particles in an Al–\(\text{Al}_2\text{O}_3\) metal-matrix composite. Comput Mater Sci 26:183–188CrossRefGoogle Scholar
  24. 24.
    Borbély A, Csikor F, Zabler S, Cloetens P, Biermann H (2004) Three-dimensional characterization of the microstructure of a metal-matrix composite by holotomography. Mater Sci Eng A 367:40–50CrossRefGoogle Scholar
  25. 25.
    Chapman D, Thomlinson W, Johnston RE, Washburn D, Pisano E, Gmür N, Zhong Z, Menk R, Arfelli F, Sayers D (1997) Diffraction enhanced x-ray imaging. Phys Med Biol 42:2015–2025CrossRefGoogle Scholar
  26. 26.
    Müller BR, Hentschel MP (2013) Handbook of technical diagnostics, chap. Micro-diagnostics: x-ray and synchrotron techniques. Springer, Berlin, pp 287–300CrossRefGoogle Scholar
  27. 27.
    de Andrade SF, Williams JJ, Müller BR, Hentschel MP, Portella PD, Chawla N (2010) Three-dimensional microstructure visualization of porosity and Fe-rich inclusions in SiC particle-reinforced al alloy matrix composites by x-ray synchrotron tomography. Metall Mater Trans A 41(8):2121–2128CrossRefGoogle Scholar
  28. 28.
    Huppmann M, Camin B, Pyzalla AR, Reimers W (2010) In-situ observation of creep damage evolution in Al–\(\text{Al}_2\text{O}_3\) MMCs by synchrotron X-ray microtomography. Int J Mater Res 101(3):372–379CrossRefGoogle Scholar
  29. 29.
    Soppa E, Fischer G, Seidenfuß M, Lammert R, Wackenhut G, Diem H (2008) Deformation and damage in Al based composites. FE simulations and experiments. In: Hirsch J, Skrotzki B, Gottstein G (eds) Aluminium alloys, their physical and mechanical properties, vol 2. Wiley-VCH, Weinheim, pp 1225–1231Google Scholar
  30. 30.
    Schneider Y, Soppa E, Kohler C, Mokso R, Roos E (2011) Numerical and experimental investigations of the global and local behaviour of an Al(6061)/\(\text{Al}_2\text{O}_3\) metal matrix composite under low cycle fatigue. Proced Eng 10:1515–1520; 11th international conference on the mechanical behavior of materials (ICM11)Google Scholar
  31. 31.
    Marrow T, Buffière JY, Withers P, Johnson G, Engelberg D (2004) High resolution X-ray tomography of short fatigue crack nucleation in austempered ductile cast iron. Int J Fatigue 26(7):717–725CrossRefGoogle Scholar
  32. 32.
    Buffière JY, Maire E, Cloetens P, Lormand G, Fougères R (1999) Characterization of internal damage in a MMCp using X-ray synchrotron phase contrast microtomography. Acta Mater 47(5):1613–1625CrossRefGoogle Scholar
  33. 33.
    Verdu C, Adrien J, Buffière J (2008) Three-dimensional shape of the early stages of fatigue cracks nucleated in nodular cast iron. Mater Sci Eng A 483–484:402–405CrossRefGoogle Scholar
  34. 34.
    Babout L, Maire E, Fougères R (2004) Damage initiation in model metallic materials: X-ray tomography and modelling. Acta Mater 52(8):2475–2487CrossRefGoogle Scholar
  35. 35.
    Maire E, Carmona V, Courbon J, Ludwig D (2007) Fast X-ray tomography and acoustic emission study of damage in metals during continuous tensile tests. Acta Mater 55:6806–6815CrossRefGoogle Scholar
  36. 36.
    Buffière J, Maire E, Adrien J, Masse J, Boller E (2010) In situ experiments with X ray tomography: an attractive tool for experimental mechanics. Exp Mech 50:289–305CrossRefGoogle Scholar
  37. 37.
    Görner W, Hentschel MP, Müller BR, Riesemeier H, Krumrey M, Ulm G, Diete W, Klein U, Frahm R (2001) BAMline: the first hard X-ray beamline at BESSY II. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 467–468, Part 1:703–706; 7th international conference on synchrotron radiation instrumentationGoogle Scholar
  38. 38.
    Müller BR, Lange A, Hentschel MP, Kupsch A (2013) A comfortable procedure for correcting X-ray detector backlight. In: Journal of physics: conference series, vol. 425, No. 19, p. 192015Google Scholar
  39. 39.
    Hentschel MP, Kupsch A, Lange A, Müller BR (2013) Refraktions-interface-radiographie. DGZfP Jahrestagung 2013:1–12Google Scholar
  40. 40.
    Bruno G, Ehrig K, Haarring H, Harwardt M, Hentschel MP, Illerhaus B, Kupsch A, Lange A, Meinel D, Müller BR, Onel Y, Staude A, Wolk T (2014) Industrial and Synchrotron X-ray CT applications for materials characterisation. In: iCT conference 2014, pp 15–31Google Scholar
  41. 41.
    Laquai R, Müller BR, Kasperovich G, Haubrich J, Requena G, Bruno G (2018) X-ray refraction distinguishes unprocessed powder from empty pores in selective laser melting Ti-6Al-4V. Mater Res Lett 6(2):130–135CrossRefGoogle Scholar
  42. 42.
    Fensch-Kleemann FE, Harbich KW, Hentschel MP (2002) Microstructural characterisation of porous ceramics by X-ray refraction topography. CFI Ceram Forum Int 79(11):E35–E38Google Scholar
  43. 43.
    Müller BR, Lange A, Harwardt M, Hentschel M, Illerhaus B, Goebbels J, Bamberg J, Heutling F (2004) Refraction computed tomography—application to metal matrix composites. MP Mater Test 46(6):314–319CrossRefGoogle Scholar
  44. 44.
    Kak A, Slaney M (1988) Principles of computerized tomographic imaging. IEEE Press, PiscatawayGoogle Scholar
  45. 45.
    Müller BR, Cooper R, Lange A, Kupsch A, Wheeler M, Hentschel M, Staude A, Pandey A, Shyam A, Bruno G (2018) Stress-induced microcrack density evolution in beta-eucryptite ceramics: experimental observations and possible route to strain hardening. Acta Mater 144(Supplement C):627–641CrossRefGoogle Scholar
  46. 46.
    Harbich KW, Hentschel MP, Schors J (2001) X-ray refraction characterization of non-metallic materials. NDT & E Int 34(4):297–302CrossRefGoogle Scholar
  47. 47.
    Hampe A, Harbich KW, Hentschel MP, Rudolph HV (1999) The determination of inner surfaces in composites by x-ray refraction. In: Proceedings of the ICCM-12 conference, Paris, FranceGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • J. Nellesen
    • 1
  • R. Laquai
    • 2
  • B. R. Müller
    • 2
  • A. Kupsch
    • 2
  • M. P. Hentschel
    • 3
  • N. B. Anar
    • 5
  • E. Soppa
    • 4
  • W. Tillmann
    • 5
  • G. Bruno
    • 2
    • 6
  1. 1.RIF e.V. – Institut für Forschung und TransferDortmundGermany
  2. 2.Bundesamt für Materialforschung und -prüfung (BAM)BerlinGermany
  3. 3.Fachgebiet Polymertechnik/PolymerphysikTechnische Universität BerlinBerlinGermany
  4. 4.Department of Computation, Design and In-Service BehaviourMaterialprüfungsanstalt Universität StuttgartStuttgartGermany
  5. 5.Faculty of Mechanical Engineering, Institute of Materials Engineering (LWT)TU Dortmund UniversityDortmundGermany
  6. 6.Institute of Physics and AstronomyUniversity of PotsdamPotsdamGermany

Personalised recommendations