Journal of Materials Science

, Volume 53, Issue 8, pp 6198–6218 | Cite as

Modeling of cementite coarsening during tempering of low-alloyed-medium carbon steel

  • Faranak Nazemi
  • Johann Hamel-Akré
  • Philippe Bocher


The kinetics of cementite coarsening in tempered martensite AISI 4340 steel system has been investigated in order to understand over-tempering behavior. Microstructural response during tempering at 550 and 650 °C has been recorded, analyzed, and modeled. A statistical analysis of metallographic sections was performed to yield measurements such as average particle size, volume fraction, morphology, volume number density. The coarsening behavior of this multicomponent alloy system has been modeled with the classical coarsening theory for multicomponent alloys. These results highlight the remarkable coarsening resistance of 4340 steel even for prolonged tempering.



The authors acknowledge many colleagues for advance technical support. In particular, Dr. N. Vanderesse for graceful help with image analysis software programming, Dr. H. Monajati, Dr. Y. Zedan, and Mr. R. Romanica for their valuable help during experimental part of the work. The Thermo-Calc and DICTRA programs are licensed from The Foundation for Computational thermodynamics, Stockholm, Sweden. This research project is supported by the Laboratoire d’Optimisation des Procédés de Fabrication en Aéronautique (LOFPA) in École de technologie supéreure (ÉTS), Montréal, Québec, Canada.

Compliance with ethical standards

Conflict of interest

The authors declare that there exists no conflict of interest in this article.


  1. 1.
    Ducassy C et al (2009) Semi-empirical method to predict hardness during fast induction heating of a tempered martensitic AMS6414 steel. In: 1st Mediterranean conference on heat treatment and surface engineering, pp 43–52Google Scholar
  2. 2.
    Clarke K et al (2011) Induction hardening 5150 steel: effects of initial microstructure and heating rate. J Mater Eng Perform 20(2):161–168CrossRefGoogle Scholar
  3. 3.
    Martin JW, Doherty RD, Cantor B (1997) In: Stability of microstructure in metallic systems. Cambridge University Press, Cambridge.
  4. 4.
    Porter DA, Easterling KE (1992) In: Phase transformations in metals and alloys, 3rd edn. Taylor & FrancisGoogle Scholar
  5. 5.
    Lee H, Allen S, Grujicic M (1991) Coarsening resistance of M2C carbides in secondary hardening steels: part I. Theoretical model for multicomponent coarsening kinetics. Metall Trans A 22(12):2863–2868CrossRefGoogle Scholar
  6. 6.
    Björklund S, Donaghey LF, Hillert M (1972) The effect of alloying elements on the rate of Ostwald ripening of cementite in steel. Acta Metall 20(7):867–874CrossRefGoogle Scholar
  7. 7.
    Kuehmann CJ, Voorhees PW (1996) Ostwald ripening in ternary alloys. Metall Mater Trans A 27(4):937–943CrossRefGoogle Scholar
  8. 8.
    Morral JE, Purdy GR (1994) Particle coarsening in binary and multicomponent alloys. Scr Metall Mater 30(7):905–908CrossRefGoogle Scholar
  9. 9.
    Morral JE, Purdy GR (1995) Thermodynamics of particle coarsening. J Alloys Compd 220(1–2):132–135CrossRefGoogle Scholar
  10. 10.
    Hoyt JJ (1998) Coarsening in multiphase multicomponent systems—I. The mean field limit. Acta Mater 47(1):345–351CrossRefGoogle Scholar
  11. 11.
    Ardell AJ (2013) Trans-interface-diffusion-controlled coarsening in ternary alloys. Acta Mater 61(20):7749–7754CrossRefGoogle Scholar
  12. 12.
    Philippe T, Voorhees PW (2013) Ostwald ripening in multicomponent alloys. Acta Mater 61(11):4237–4244CrossRefGoogle Scholar
  13. 13.
    DICTRA Software MOBFE2 version 2 (2011)Google Scholar
  14. 14.
    Thermo-Calc Software 3.1, TCFE version 7 (2013)Google Scholar
  15. 15.
    Andersson J-O et al (1990) Computer simulation of multicomponent diffusional transformations in steel. In: Purdy GR (ed) Fundamentals and applications of ternary diffusion. Pergamon Press, New York, pp 153–163CrossRefGoogle Scholar
  16. 16.
    Krauss G (2005) Steels: processing, structure, and performance. ASM InternationalGoogle Scholar
  17. 17.
    Thermo-Calc Software AB, Stockholm, Sweden.
  18. 18.
    Jönsson B (1995) Assessment of the mobilities of Cr, Fe and Ni in bcc Cr–Fe–Ni alloys. ISIJ Int 35:1415–1421CrossRefGoogle Scholar
  19. 19.
    Chandler H (1994) Heat treater’s guide: practices and procedures for irons and steels. ASM InternationalGoogle Scholar
  20. 20.
    Bramfitt BL, Benscoter AO (2002) Metallographer’s guide: practices and procedures for irons and steels. American Society for Metals, Metals Park, OhioGoogle Scholar
  21. 21.
    Byeon JW, Kwun SI (2003) Nondestructive evaluation of thermally degraded 2.25 Cr–1Mo steel by electrical resistivity measurement. Mater Trans 44(6):1204–1208CrossRefGoogle Scholar
  22. 22.
    Schindelin J et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Meth 9(7):676–682CrossRefGoogle Scholar
  23. 23.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Meth 9(7):671–675CrossRefGoogle Scholar
  24. 24.
    Underwood EE (1970) Quantitative stereology. Addison-Wesley Pub. Co., ReadingGoogle Scholar
  25. 25.
    Caron RN, Krauss G (1972) The tempering of Fe–C lath martensite. Metall Trans 3(9):2381–2389CrossRefGoogle Scholar
  26. 26.
    Bhadeshia HKDH (1989) Theoretical analysis of changes in cementite composition during tempering of bainite. Mater Sci Technol 5(2):131–137CrossRefGoogle Scholar
  27. 27.
    Lv ZQ et al (2013) Effect of cyclic heat treatments on spheroidizing behavior of cementite in high carbon steel. Mater Sci Eng A 574:143–148CrossRefGoogle Scholar
  28. 28.
    Hillert M (1986) Impact of Clarence Zener upon metallurgy. J Appl Phys 60(6):1868–1876CrossRefGoogle Scholar
  29. 29.
    Tiryakioğlu M, Ökten G, Hudak D (2009) Statistics for estimating the population average of a Lifshitz–Slyozov–Wagner (LSW) distribution. J Mater Sci 44(21):5754–5759. CrossRefGoogle Scholar
  30. 30.
    Vedula K, Heckel R (1970) Spheroidization of binary Fe–C alloys over a range of temperatures. Metall Trans 1(1):9–18Google Scholar
  31. 31.
    Baldan A (2002) Review Progress in Ostwald ripening theories and their applications to nickel-base superalloys Part I: Ostwald ripening theories. J Mater Sci 37(11):2171–2202. CrossRefGoogle Scholar
  32. 32.
    Ardell AJ (1997) Temporal behavior of the number density of particles during Ostwald ripening. Mater Sci Eng A 238:108–120CrossRefGoogle Scholar
  33. 33.
    DICTRA: ‘Examples f1: Coarsening of a M6C precipitate in an Fe-Mo-C alloy’, Thermo-Calc Software AB, 2013
  34. 34.
    Hu X et al (2006) Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium. Int J Fatigue 28(3):175–182CrossRefGoogle Scholar
  35. 35.
    Andersson JO et al (2002) Thermo-Calc 3.1 and DICTRA 27, Computational tools for materials science. Calphad 26:273–312CrossRefGoogle Scholar
  36. 36.
    Andersson J-O, Ågren J (1992) Models for numerical treatment of multicomponent diffusion in simple phases. J Appl Phys 72:1350–1355CrossRefGoogle Scholar
  37. 37.
    Ghosh G, Olson GB (2002) Precipitation of paraequilibrium cementite: experiments, and thermodynamic and kinetic modeling. Acta Mater 50(8):2099–2119CrossRefGoogle Scholar
  38. 38.
    Coates DE (1972) Diffusion-controlled precipitate growth in ternary systems I. Metall Mater Trans B 3(5):1203–1212CrossRefGoogle Scholar
  39. 39.
    Coates DE (1973) Diffusion controlled precipitate growth in ternary systems: II. Metall Trans 4(4):1077–1086CrossRefGoogle Scholar
  40. 40.
    Coates DE (1973) Precipitate growth kinetics for Fe-C-X alloys. Metall Mater Trans B 4(1):395–396CrossRefGoogle Scholar
  41. 41.
    Jönsson B (1994) Ferromagnetic ordering and diffusion of carbon and nitrogen in bcc Cr–Fe–Ni alloys. Zeitschrift für Met 85:498–501Google Scholar
  42. 42.
    Jönsson B (1992) On ferromagnetic ordering and lattice diffusion: a simple model. Zeitschrift für Met 83:349–355Google Scholar
  43. 43.
    Hillert M (2007) Phase equilibria, phase diagrams and phase transformations: their thermodynamic basis. Cambridge University Press, Cambridge.
  44. 44.
    Zhu C et al (2007) Three-dimensional atom probe characterization of alloy element partitioning in cementite during tempering of alloy steel. Ultramicroscopy 107(9):808–812CrossRefGoogle Scholar
  45. 45.
    Clarke AJ et al (2014) Atomic and nanoscale chemical and structural changes in quenched and tempered 4340 steel. Acta Mater 77:17–27CrossRefGoogle Scholar
  46. 46.
    Ghosh S (2010) Rate-controlling parameters in the coarsening kinetics of cementite in Fe–0.6C steels during tempering. Scr Mater 63(3):273–276CrossRefGoogle Scholar
  47. 47.
    Greenwood GW (1956) The growth of dispersed precipitates in solutions. Acta Metall 4(3):243–248CrossRefGoogle Scholar
  48. 48.
    Umantsev A, Olson GB (1993) Ostwald ripening in multicomponent alloys. Scr Metall Mater 29(8):1135–1140CrossRefGoogle Scholar
  49. 49.
    Schneider A, Inden G (2005) Computer simulation of diffusion controlled phase transformations. In: Continuum scale simulation of engineering materials. Wiley-VCH Verlag GmbH & Co. KGaA, pp 1–36.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.École de technologie supérieureMontrealCanada

Personalised recommendations