Journal of Materials Science

, Volume 53, Issue 8, pp 5684–5695 | Cite as

Uniaxial deformation of face-centered-cubic(Ni)-ordered B2(NiAl) bicrystals: atomistic mechanisms near a Kurdjumov–Sachs interface

  • D. Choudhuri
  • R. Banerjee
  • S. G. Srinivasan
Interface Behavior


Creating tailored interfaces between soft and hard materials is a promising route to simultaneously enhance ductility and strength of multicomponent materials. Here, we study deformation mechanisms in a model bicrystal, with a Kurdjumov–Sachs (KS) interface, between face-centered-cubic Ni and ordered-B2 NiAl slabs using molecular dynamics simulations. The bicrystals were uniaxially deformed by strain rates of \(10^7\) and \(10^9\,\hbox {s}^{-1}\) by holding temperatures constant at 300, 500, 700, and 900 K for each strain rate. Our simulations reveal atomistic processes that create sessile and glissile dislocations, and their reactions during high-strain rate deformation. At \(10^9\,\hbox {s}^{-1}\) strain rates, dislocation processes enhance ductility and cause large-scale atomic rearrangements in the KS interfacial region. This subsequently causes nucleation, growth, and coalescence of nano-voids into cracks inside the harder B2-ordered phase bordering the interface. Our results suggest that interfaces between “soft”–“hard” materials likely withstand high-strain rates better.



LAMMPS computations used Talon3 cluster at UNT and Stampede cluster at TACC at the University of Texas at Austin.


  1. 1.
    Delincé M, Brechet Y, Embury J, Geers M, Jacques P, Pardoen T (2007) Acta Mater 55:2337–2350CrossRefGoogle Scholar
  2. 2.
    Li Z, Pradeep KG, Deng Y, Raabe D, Tasan CC (2016) Nature 534:227–230CrossRefGoogle Scholar
  3. 3.
    Han J, Kang S-H, Lee S-J, Kawasaki M, Lee H-J, Ponge D, Raabe D, Lee Y-K (2017) Nat Commun 8:751–754CrossRefGoogle Scholar
  4. 4.
    Porter DA, Easterling KE, Sherif M (2009) Phase transformations in metals and alloys (revised reprint). CRC PressGoogle Scholar
  5. 5.
    Bhadeshia HKDH et al (1992) Bainite in steels. Institute of Materials, LondonGoogle Scholar
  6. 6.
    Hull D, Bacon DJ (2001) Introduction to dislocations. Butterworth-Heinemann, OxfordGoogle Scholar
  7. 7.
    Mura T (2013) Micromechanics of defects in solids. Springer, BerlinGoogle Scholar
  8. 8.
    Wang J, Hoagland R, Hirth J, Misra A (2008) Acta Mater 56:3109–3119CrossRefGoogle Scholar
  9. 9.
    Demkowicz M, Hoagland R (2008) J Nucl Mater 372:45–52CrossRefGoogle Scholar
  10. 10.
    Kurdjumow G, Sachs G (1930) Z Phys Hadrons Nucl 64:325–343Google Scholar
  11. 11.
    Dahmen U (1982) Acta Metall 30:63–73CrossRefGoogle Scholar
  12. 12.
    Van der Merwe J, Shiflet G (1994) Acta Metall et Mater 42:1173–1187CrossRefGoogle Scholar
  13. 13.
    Shiflet G, Van der Merwe J (1994) Acta Metall et Mater 42:1189–1198CrossRefGoogle Scholar
  14. 14.
    Van der Merwe J, Shiflet G (1994) Acta Metall et Mater 42:1199–1205CrossRefGoogle Scholar
  15. 15.
    Howell P, Bee J, Honeycombe R (1979) Metall Trans A 10:1213–1222CrossRefGoogle Scholar
  16. 16.
    Metsanurk E, Tamm A, Caro A, Aabloo A, Klintenberg M (2014) Sci Rep 4:7567–7569CrossRefGoogle Scholar
  17. 17.
    Demkowicz M, Hoagland R, Hirth J (2008) Phys Rev Lett 100:136102–136105CrossRefGoogle Scholar
  18. 18.
    Misra A, Hirth J, Hoagland R, Embury J, Kung H (2004) Acta Mater 52:2387–2394CrossRefGoogle Scholar
  19. 19.
    Sinclair C, Embury J, Weatherly G (1999) Mater Sci Eng A 272:90–98CrossRefGoogle Scholar
  20. 20.
    Shimizu K, Oka M, Wayman C (1971) Acta Metall 19:1–6CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP (2014) Progr Mater Sci 61:1–93CrossRefGoogle Scholar
  22. 22.
    Choudhuri D, Gwalani B, Gorsse S, Mikler C, Ramanujan R, Gibson M, Banerjee R (2017) Scr Mater 127:186–190CrossRefGoogle Scholar
  23. 23.
    Choudhuri D, Shukla S, Green WB, Ageh V, Gwalani B, Banerjee R, Mishra RS. Manuscript in reviewGoogle Scholar
  24. 24.
    Lee A, Choudhuri D, Subramanian K (2012) Lead-free solders: materials reliability for electronics. Wiley, New York, pp 273–295CrossRefGoogle Scholar
  25. 25.
    Plimpton SJ (1995) J Comput Phys 117:1–19CrossRefGoogle Scholar
  26. 26.
    Purja Pun GP, Mishin Y (2009) Philos Mag 89:3245–3267CrossRefGoogle Scholar
  27. 27.
    Dieter GE (1961) Mechanical Metallurgy. McGraw Hill Kogakusha Limited, TokyoCrossRefGoogle Scholar
  28. 28.
    Stukowski A (2010) Modell Simul Mater Sci Eng 18:015012–015018CrossRefGoogle Scholar
  29. 29.
    Kelchner CL, Plimpton SJ, Hamilton JC (1998) Phys Rev B 58:11085–11088CrossRefGoogle Scholar
  30. 30.
    Srinivasan SG, Baskes MI, Wagner GJ (2007) J Appl Phys 101:043504–043510CrossRefGoogle Scholar
  31. 31.
    Srinivasan SG, Baskes MI (2007) Metall Mater Trans A 38A:2716–2720CrossRefGoogle Scholar
  32. 32.
    Cai Y, Wu H, Luo S (2017) J Appl Phys 121:105901–105907CrossRefGoogle Scholar
  33. 33.
    Williams DB, Carter CB (2009) The transmission electron microscope. Springer, BerlinCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, Advanced Materials and Manufacturing Processes InstituteUniversity of North TexasDentonUSA
  2. 2.Department of Materials Science and EngineeringUniversity of North TexasDentonUSA

Personalised recommendations