Advertisement

Journal of Materials Science

, Volume 53, Issue 8, pp 6094–6105 | Cite as

Single-step hydrothermally grown nanosheet-assembled tungsten oxide thin films for sensitive and selective NO2 gas detection

  • N. S. Harale
  • D. S. Dalavi
  • Sawanta S. Mali
  • N. L. Tarwal
  • S. A. Vanalakar
  • V. K. Rao
  • Chang Kook Hong
  • J. H. Kim
  • P. S. Patil
Electronic materials
  • 369 Downloads

Abstract

A well-organized tungsten oxide (WO3) nanosheet-assembled microbricks have been synthesized by the hydrothermal route at 180 °C with the help of peroxy-tungstic acid sol. The as-synthesized thin films have been characterized for structural, morphological and compositional studies by using X-ray diffraction, scanning electron microscopy and FT-Raman spectroscopy. The deposited WO3 thin films have been found to be polycrystalline in nature with the monoclinic crystal structure. The SEM micrographs revealed the formation of microbrick-like structure which was made up of two-dimensional (2D) nanosheets. The 2D nanosheets act as a nanobuilding blocks for the formation of microbricks. The gas-sensing performance of WO3 thin films was carried out for different gases, and it is observed that sensor exhibited maximum gas response towards Nitrogen dioxide (NO2) gas which is seven times higher than that of other gases at an operating temperature of 300 °C over the concentration range of 5–100 ppm. WO3 microbricks sensor showed higher response about 11.5 and fast response–recovery characteristics towards NO2 gas, especially a much quicker gas response time of 16 s and recovery time of 260 s at 100 ppm.

Notes

Acknowledgements

Authors are thankful to the DRDO, New Delhi, for the financial support through Project-DRDO/ERIP/ER/0803719/M/01/1343. This work was supported by the Human Resources Development Program (No.: 20124010203180) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Trade, Industry and Energy. This research was supported by the National Research Foundation of Korea (NRF-2017R1A2B4008117) funded by the Ministry of Science, ICT and Future Planning (2016H1D3 A1909289) for an outstanding overseas young researcher.

References

  1. 1.
    Yamazoe NN (1991) New approaches for improving semiconductor gas sensors. Sens Actuators B 5:7–19CrossRefGoogle Scholar
  2. 2.
    Rossinyol E, Arbiol J, Peiró F, Cornet A, Morante JR, Tian B, Bo T, Zhao D (2005) Nanostructured metal oxides synthesized by hard template method for gas sensing applications. Sens Actuators B 109:57–63CrossRefGoogle Scholar
  3. 3.
    Shen Y, Zhang B, Cao X, Wei D, Ma J, Jia L, Gao S, Cui B, Jin Y (2014) Microstructure and enhanced H2S sensing properties of Pt-loaded WO3 thin films. Sens Actuators B 193:273–279CrossRefGoogle Scholar
  4. 4.
    Harale NS, Kamble DL, Gang MG, Rao VK, Kim JH, Patil PS (2013) Exotic fern-like morphologies 3D dendritic cassiterite for ultra-sensitive gas sensing. Mater Today 16:452–453CrossRefGoogle Scholar
  5. 5.
    Kadir RA, Li ZY, Gao S, Sadek AZ, Rani RA, Zoolfakar AS, Field MR, Ou JZ, Chrimes AF, Kourosh KZ (2014) Electrospun granular hollow SnO2 nanofibers hydrogen gas sensors operating at low temperatures. J Phys Chem B 118:3129–3139Google Scholar
  6. 6.
    Patil SP, Patil VL, Shendage SS, Harale NS, Vanalakar SA, Kim JH, Patil PS (2016) Spray pyrolyzed indium oxide thick films as NO2 gas sensor. Ceram Int 42:16160–16168CrossRefGoogle Scholar
  7. 7.
    Deng J, Wang L, Lou Z, Zhang T (2014) Fast response/recovery performance of comb-like Co3O4 nanostructure. RSC Adv 4:21115–21120CrossRefGoogle Scholar
  8. 8.
    Xiao B, Zhao Q, Xiao C, Yang T, Wang P, Wang F, Chen X, Zhang M (2015) Low-temperature solvothermal synthesis of hierarchical flower-like WO3 nanostructures and their sensing properties for H2S. CrystEngComm 17:5710–5716CrossRefGoogle Scholar
  9. 9.
    Chen TY, Chen HI, Hsu CS, Huang CC, Wu JS, Chou PC, Liu WC (2015) Characteristics of ZnO nanorods-based ammonia gas sensors with a cross-linked configuration. Sens Actuators B 221:491–498CrossRefGoogle Scholar
  10. 10.
    Horprathuma M, Limwicheana K, Wisitsoraat A, Eiamchai P, Aiempanakit K, Limnonthakul P, Nuntawong N, Pattantsetakul V, Tuantranont A, Chindaudom P (2013) NO2-sensing properties of WO3 nanorods prepared by glancing angle DC magnetron sputtering. Sens Actuators B 176:685–691CrossRefGoogle Scholar
  11. 11.
    Lee I, Choi SJ, Park KM, Lee SS, Choi S, Kim ID, Park CO (2014) The stability, sensitivity and response transients of ZnO, SnO2 and WO3 sensors under acetone, toluene and H2S environments. Sens Actuators B 197:300–307CrossRefGoogle Scholar
  12. 12.
    Chi X, Liu C, Liu L, Li Y, Wang Z, Bo X, Liu L, Chang C (2014) Tungsten trioxide nanotubes with high sensitive and selective properties to acetone. Sens Actuators 194:33–37CrossRefGoogle Scholar
  13. 13.
    Kadir RA, Zhang W, Wang Y, Ou JZ, Wlodarski W, O’Mullane AP, Bryant G, Taylor M, Zadeh KK (2015) Anodized nanoporous WO3 Schottky contact structures for hydrogen and ethanol sensing. J Mater Chem A 3:7994–8001CrossRefGoogle Scholar
  14. 14.
    Zhu G, Xi C, Xu H, Zheng D, Liu Y, Xu X, Shen X (2012) Hierarchical NiO hollow microspheres assembled from nanosheet-stacked nanoparticles and their application in a gas sensor. RSC Adv 2:4236–4241CrossRefGoogle Scholar
  15. 15.
    Li BL, Setyawati MI, Chen L, Xie J, Ariga K, Lim CT, Garaj S, Leong DT (2017) Directing assembly and disassembly of 2D MoS2 nanosheets with DNA for drug delivery. ACS Appl Mater Interfaces 9:15286–15296CrossRefGoogle Scholar
  16. 16.
    Ji Q, Yamazaki T, Sun J, Gorecka Ż, Huang NC, Hsu SH, Shrestha LK, Hill JP, Ariga K (2017) Spongelike porous silica nanosheets: from “soft” molecular trapping to DNA delivery. ACS Appl Mater Interfaces 9:4509–4518CrossRefGoogle Scholar
  17. 17.
    Kong X, Liu Q, Zhang C, Peng Z, Chen Q (2017) Elemental two-dimensional nanosheets beyond graphene. Chem Soc Rev 46:2127–2157CrossRefGoogle Scholar
  18. 18.
    Khan AH, Ghosh S, Pradhan B, Dalui A, Shrestha LK, Acharya S, Ariga K (2017) Two-dimensional (2D) nanomaterials towards electrochemical nanoarchitectonics in energy-related applications. Bull Chem Soc Jpn 90:627–648CrossRefGoogle Scholar
  19. 19.
    Xu MH, Cai FS, Yin J, Yuan ZH, Bie LJ (2010) Facile synthesis of highly ethanol-sensitive SnO2 nanosheets using homogeneous precipitation method. Sens Actuators B 145:875–878CrossRefGoogle Scholar
  20. 20.
    Ida S (2015) Development of light energy conversion materials using two-dimensional inorganic nanosheets. Bull Chem Soc Jpn 88:1619–1628CrossRefGoogle Scholar
  21. 21.
    Zeng Y, Qiao L, Bing Y, Wen M, Zou B, Zheng W, Zhang T, Zou G (2012) Development of microstructure CO sensor based on hierarchically porous ZnO nanosheet thin films. Sens Actuators B 173:897–902CrossRefGoogle Scholar
  22. 22.
    Cao B, Chen J, Tang X, Zhou W (2009) Growth of monoclinic WO3 nanowire array for highly sensitive NO2 detection. J Mater Chem 19:2323–2327CrossRefGoogle Scholar
  23. 23.
    Qin Y, Shen W, Li X, Hu M (2011) Effect of annealing on microstructure and NO2-sensing properties of tungsten oxide nanowires synthesized by solvothermal method. Sens Actuators B 155:646–652CrossRefGoogle Scholar
  24. 24.
    Cai ZX, Li HY, Yang XN, Guo X (2015) NO sensing by single crystalline WO3 nanowires. Sens Actuators B 219:346–353CrossRefGoogle Scholar
  25. 25.
    Wang Z, Sun P, Yang T, Gao Y, Li X, Lu G, Du Y (2013) Flower-like WO3 architectures synthesized via a microwave-assisted method and their gas sensing properties. Sens Actuators B 186:734–740CrossRefGoogle Scholar
  26. 26.
    Wang C, Li X, Feng C, Sun Y, Lu G (2015) Nanosheets assembled hierarchical flower-like WO3 nanostructures: synthesis, characterization, and their gas sensing properties. Sens Actuators B 210:75–81CrossRefGoogle Scholar
  27. 27.
    Wu Q, Huang J, Li H (2015) Deposition of porous nano-WO3 coatings with tunable grain shapes by liquid plasma spraying for gas-sensing applications. Mater Lett 141:100–103CrossRefGoogle Scholar
  28. 28.
    Baratto C, Sberveglieri G, Onischuk A, Caruso B, Stasio S (2004) Low temperature selective NO2 sensors by nanostructured fibres of ZnO. Sens Actuators B Chem 100:261–265CrossRefGoogle Scholar
  29. 29.
    Ganbavle VV, Inamdar SI, Agawane GL, Kim JH, Rajpure KY (2016) Synthesis of fast response, highly sensitive and selective Ni:ZnO based NO2 sensor. Chem Eng J 286:36–47CrossRefGoogle Scholar
  30. 30.
    Harale NS, Kamble AS, Tarwal NL, Mulla IS, Rao VK, Kim JH, Patil PS (2016) Hydrothermally grown ZnO nanorods arrays for selective NO2 gas sensing: effect of anion generating agents. Ceram Int 42:12807–12814CrossRefGoogle Scholar
  31. 31.
    Dalavi DS, Devan RS, Patil RA, Patil RS, Ma YR, Sadale SB, Kim IY, Kim JH, Patil PS (2013) Efficient electrochromic performance of nanoparticulate WO3 thin films. J Phys Chem C 1:3722–3728Google Scholar
  32. 32.
    Srivastava S, Jain K, Singh VN, Singh S, Vijayan N, Dilawar N, Gupta G, Senguttuvan TD (2012) Faster response of NO2 sensing in graphene-WO3 nanocomposites. Nanotechnology 23:205501–205507CrossRefGoogle Scholar
  33. 33.
    Nonaka K, Takase A, Miyakawa K (1993) Raman spectra of sol–gel-derived tungsten oxides. J Mater Sci Lett 12:274–277CrossRefGoogle Scholar
  34. 34.
    Lian C, Xiao X, Chen Z, Liu Y, Zhao E, Wang D, Chen C, Li Y (2016) Preparation of hexagonal ultrathin WO3 nano-ribbons and their electrochemical performance as an anode material in lithium ion batteries. Nano Res 9:435–441CrossRefGoogle Scholar
  35. 35.
    Yang J, Li W, Li J, Sun D, Chen Q (2012) Hydrothermal synthesis and photoelectrochemical properties of vertically aligned tungsten trioxide (hydrate) plate-like arrays fabricated directly on FTO substrates. J Mater Chem 2:17744–17752CrossRefGoogle Scholar
  36. 36.
    Yin L, Chen D, Hu M, Shi H, Yang D, Fan B, Shao G, Zhang R, Shao G (2014) Microwave-assisted growth of In2O3 nanoparticles on WO3 nanoplates to improve H2S-sensing performance. J Mater Chem A 2:18867–18874CrossRefGoogle Scholar
  37. 37.
    Bai S, Zhang K, Luo R, Li D, Chen A, Liu CC (2012) Low-temperature hydrothermal synthesis of WO3 nanorods and their sensing properties for NO2. J Mater Chem 22:12643–12650CrossRefGoogle Scholar
  38. 38.
    Bai S, Li D, Han D, Luo R, Chen A, Chung CL (2010) Preparation, characterization of WO3–SnO2 nanocomposites and their sensing properties for NO2. Sens Actuators B 150:749–755CrossRefGoogle Scholar
  39. 39.
    Tarwal NL, Patil AR, Harale NS, Rajgure AV, Suryavanshi SS, Bae WR, Patil PS, Kim JH, Jang JH (2014) Gas sensing performance of the spray deposited Cd–ZnO thin films. J Alloys Compd 598:282–288CrossRefGoogle Scholar
  40. 40.
    Kamble DL, Harale NS, Patil VL, Patil PS, Kadam LD (2017) Characterization and NO2 gas sensing properties of spray pyrolyzed SnO2 thin films. J Anal Appl Pyrolysis 127:38–46CrossRefGoogle Scholar
  41. 41.
    Kamble AS, Harale NS, Patil PS, Sinha BB, Chung KC (2012) CdO and CdO–ZnO composite nanowires: synthesis, characterization and ethanol gas response. In: 1st international symposium on physics and technology sensors, pp 286–289Google Scholar
  42. 42.
    Park S, Kim H, Jin C, Choi SW, Kim SS, Lee C (2012) Enhanced CO gas sensing properties of Pt-functionalized WO3 nanorods. Thermochim Acta 542:69–73CrossRefGoogle Scholar
  43. 43.
    Liu X, Zhang J, Wang L, Yang T, Guo X, Wu S, Wang S (2011) 3D hierarchically porous ZnO structures and their functionalization by Au nanoparticles for gas sensors. J Mater Chem 21:349–356CrossRefGoogle Scholar
  44. 44.
    Wang C, Feng C, Wang M, Li X, Cheng P, Zhang H, Sun Y, Sun P, Lu G (2015) One-pot synthesis of hierarchical WO3 hollow nanospheres and their gas sensing properties. RSC Adv 5:29698–29703CrossRefGoogle Scholar
  45. 45.
    You L, Sun YF, Ma J, Guan Y, Sun JM, Du Y, Lu GY (2011) Highly sensitive NO2 sensor based on square-like tungsten oxide prepared with hydrothermal treatment. Sens Actuators B 157:401–407CrossRefGoogle Scholar
  46. 46.
    Dalavi DS, Harale NS, Mulla IS, Rao VK, Patil VB, Kim IY, Kim JH, Patil PS (2015) Nanoporous network of nickel oxide for ammonia gas detection. Mater Lett 146:103–107CrossRefGoogle Scholar
  47. 47.
    Kumar V, Patil V, Apte A, Harale N, Patil P, Kulkarni S (2015) Ultrasensitive gold nanostar-polyaniline composite for ammonia gas sensing. Langmuir 31:13247–13256CrossRefGoogle Scholar
  48. 48.
    Siciliano T, Tepore A, Micocci G, Serra A, Manno D, Filippo E (2008) WO3 gas sensors prepared by thermal oxidization of tungsten. Sens Actuators B 133:321–326CrossRefGoogle Scholar
  49. 49.
    Liu Z, Miyauchi M, Yamazaki T, Shen Y (2009) Facile synthesis and NO2 gas sensing of tungsten oxide nanorods assembled microspheres. Sens Actuators B 140:514–519CrossRefGoogle Scholar
  50. 50.
    Traversa E (1995) Intelligent ceramic materials for chemical sensors. J Intell Mater Syst Struct 6:860–869CrossRefGoogle Scholar
  51. 51.
    Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7:143–167CrossRefGoogle Scholar
  52. 52.
    Xia H, Wang Y, Kong F, Wang S, Zhu B, Guo X, Zhang J, Wang Y, Wu S (2008) Au-doped WO3-based sensor for NO2 detection at low operating temperature. Sens Actuators B 134:133–139CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. S. Harale
    • 1
  • D. S. Dalavi
    • 2
  • Sawanta S. Mali
    • 3
  • N. L. Tarwal
    • 1
  • S. A. Vanalakar
    • 4
  • V. K. Rao
    • 5
  • Chang Kook Hong
    • 3
  • J. H. Kim
    • 6
  • P. S. Patil
    • 1
  1. 1.Thin Film Materials Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia
  2. 2.Department of PhysicsKrishna Mahavidyalaya, Rethare (Bk)Karad, SataraIndia
  3. 3.School of Applied Chemical EngineeringChonnam National UniversityGwangjuSouth Korea
  4. 4.Department of PhysicsKarmveer Hire CollegeKolhapurIndia
  5. 5.Defence Research & Development EstablishmentGwaliorIndia
  6. 6.Department of Materials Science and EngineeringChonnam National UniversityGwangjuSouth Korea

Personalised recommendations