Advertisement

Journal of Materials Science

, Volume 53, Issue 8, pp 5766–5776 | Cite as

Interfacial stability of graphene-based surfaces in water and organic solvents

  • Ho Shin Kim
  • Thomas J. Oweida
  • Yaroslava G. Yingling
Interface Behavior

Abstract

The mass production of graphene and graphene oxide (GO) is essential for its use in commercial products. To improve its processing in the solution, dispersion behavior of graphene-based materials and their colloidal stability must be further understood. This study used all-atom molecular dynamics simulations to understand how electrostatics, van der Waals interactions, and hydrogen bonding affect the exfoliation and stability of three-layered graphene as a function of oxidation and solvent. Water, methanol, and ethanol were chosen as solvents due to their various dispersion behaviors. Our study indicated that (1) both surface oxidation level and solvent type can heavily influence the stability and (2) a decrease in interlayer vdW interactions, an increase in GO–solvent electrostatic interactions, and an increase in GO–solvent hydrogen bonding are important factors that can facilitate the dissolution of GO.

Notes

Acknowledgements

This work was supported by NSF (CMMI-1150682) and NSF’s Research Triangle MRSEC (DMR-1121107). The computation support was provided by High Performance Computing (HPC) center at North Carolina State University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2017_1893_MOESM1_ESM.docx (413 kb)
Supplementary material 1 (DOCX 413 kb)

References

  1. 1.
    Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101.  https://doi.org/10.1038/nnano.2007.451 CrossRefGoogle Scholar
  2. 2.
    Hajgato B, Guryel S, Dauphin Y, Blairon JM, Miltner HE, Van Lier G, De Proft F, Geerlings P (2013) Out-of-plane shear and out-of plane Young’s modulus of double-layer graphene. Chem Phys Lett 564:37.  https://doi.org/10.1016/j.cplett.2013.02.018 CrossRefGoogle Scholar
  3. 3.
    Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457.  https://doi.org/10.1038/nature06016 CrossRefGoogle Scholar
  4. 4.
    Johnson DW, Dobson BP, Coleman KS (2015) A manufacturing perspective on graphene dispersions. Curr Opin Colloid In 20:367.  https://doi.org/10.1016/j.cocis.2015.11.004 CrossRefGoogle Scholar
  5. 5.
    Ayan-Varela M, Paredes JI, Villar-Rodil S, Rozada R, Martinez-Alonso A, Tascon JMD (2014) A quantitative analysis of the dispersion behavior of reduced graphene oxide in solvents. Carbon 75:390.  https://doi.org/10.1016/j.carbon.2014.04.018 CrossRefGoogle Scholar
  6. 6.
    Konios D, Stylianakis MM, Stratakis E, Kymakis E (2014) Dispersion behaviour of graphene oxide and reduced graphene oxide. J Colloid Interface Sci 430:108.  https://doi.org/10.1016/j.jcis.2014.05.033 CrossRefGoogle Scholar
  7. 7.
    Park S, An JH, Jung IW, Piner RD, An SJ, Li XS, Velamakanni A, Ruoff RS (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9:1593.  https://doi.org/10.1021/nl803798y CrossRefGoogle Scholar
  8. 8.
    Yang J, Yang X, Li Y (2015) Molecular simulation perspective of liquid-phase exfoliation, dispersion, and stabilization for graphene. Curr Opin Colloid Interface Sci 20:339CrossRefGoogle Scholar
  9. 9.
    Fu C, Yang X (2013) Molecular simulation of interfacial mechanics for solvent exfoliation of graphene from graphite. Carbon 55:350CrossRefGoogle Scholar
  10. 10.
    Tsai JL, Tu JF (2010) Characterizing mechanical properties of graphite using molecular dynamics simulation. Mater Des 31:194.  https://doi.org/10.1016/j.matdes.2009.06.032 CrossRefGoogle Scholar
  11. 11.
    Lee C, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385.  https://doi.org/10.1126/science.1157996 CrossRefGoogle Scholar
  12. 12.
    Liu LZ, Zhang JF, Gao HL, Wang L, Jiang X, Zhao JJ (2016) Tailoring physical properties of graphene: effects of hydrogenation, oxidation, and grain boundaries by atomistic simulations. Comput Mater Sci 112:527.  https://doi.org/10.1016/j.commatsci.2015.06.032 CrossRefGoogle Scholar
  13. 13.
    Paci JT, Belytschko T, Schatz GC (2007) Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide. J Phys Chem C 111:18099.  https://doi.org/10.1021/jp075799g CrossRefGoogle Scholar
  14. 14.
    Zheng QB, Geng Y, Wang SJ, Li ZG, Kim JK (2010) Effects of functional groups on the mechanical and wrinkling properties of graphene sheets. Carbon 48:4315.  https://doi.org/10.1016/j.carbon.2010.07.044 CrossRefGoogle Scholar
  15. 15.
    Zhao H, Min K, Aluru NR (2009) Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett 9:3012.  https://doi.org/10.1021/nl901448z CrossRefGoogle Scholar
  16. 16.
    Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24:10560.  https://doi.org/10.1021/la801744a CrossRefGoogle Scholar
  17. 17.
    Bosak A, Krisch M, Mohr M, Maultzsch J, Thomsen C (2007) Elasticity of single-crystalline graphite: inelastic x-ray scattering study. Phys Rev B.  https://doi.org/10.1103/PhysRevB.75.153408 Google Scholar
  18. 18.
    Savini G, Dappe YJ, Oberg S, Charlier JC, Katsnelson MI, Fasolino A (2011) Bending modes, elastic constants and mechanical stability of graphitic systems. Carbon 49:62.  https://doi.org/10.1016/j.carbon.2010.08.042 CrossRefGoogle Scholar
  19. 19.
    Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Ruoff RS (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9:1593.  https://doi.org/10.1021/nl803798y CrossRefGoogle Scholar
  20. 20.
    Lee M, Kwon J, Na S (2016) Mechanical behavior comparison of spider and silkworm silks using molecular dynamics at atomic scale. Phys Chem Chem Phys 18:4814.  https://doi.org/10.1039/c5cp06809f CrossRefGoogle Scholar
  21. 21.
    Teich-McGoldrick SL, Greathouse JA, Cygan RT (2012) Molecular dynamics simulations of structural and mechanical properties of muscovite: pressure and temperature effects. J Phys Chem C 116:15099.  https://doi.org/10.1021/jp303143s CrossRefGoogle Scholar
  22. 22.
    Luo J, Vargheese KD, Tandia A, Hu GL, Mauro JC (2016) Crack nucleation criterion and its application to impact indentation in glasses. Sci Rep UK 6:23720.  https://doi.org/10.1038/ 513 srep.23720 CrossRefGoogle Scholar
  23. 23.
    Tu Q, Kim HS, Oweida TJ, Parlak Z, Yingling YG, Zauscher S (2017) Interfacial mechanical properties of graphene on self-assembled monolayers: experiments and simulations. ACS Appl Mater Interface 9:10203.  https://doi.org/10.1021/acsami.6b16593 CrossRefGoogle Scholar
  24. 24.
    Ruiz L, Xia WJ, Meng ZX, Keten S (2015) A coarse-grained model for the mechanical behavior of multi-layer graphene. Carbon 82:103.  https://doi.org/10.1016/j.carbon.2014.10.040 CrossRefGoogle Scholar
  25. 25.
    Aksimentiev A, Brunner RK, Cruz-Chú E, Comer J, Schulten K (2009) Modeling transport through synthetic nanopores. IEEE Nanatechnol Mag 3:20.  https://doi.org/10.1109/MNANO.2008.931112 CrossRefGoogle Scholar
  26. 26.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph Model 14:33.  https://doi.org/10.1016/0263-7855(96)00018-5 CrossRefGoogle Scholar
  27. 27.
    Zhao J, Liu L, Li F (2015) Graphene oxide: physics and applications. Springer.  https://doi.org/10.1007/978-3-662-44829-8 Google Scholar
  28. 28.
    Li F, Jiang X, Zhao JJ, Zhang SB (2015) Graphene oxide: a promising nanomaterial for energy and environmental applications. Nano Energy 16:488.  https://doi.org/10.1016/j.nanoen.2015.07.014 CrossRefGoogle Scholar
  29. 29.
    Stauffer D, Dragneva N, Floriano WB, Mawhinney RC, Fanchini G, French S, Rubel O (2014) An atomic charge model for graphene oxide for exploring its bioadhesive properties in explicit water. J Chem Phys 141:044705.  https://doi.org/10.1063/1.4890503 CrossRefGoogle Scholar
  30. 30.
    Banhart F, Kotakoski J, Krasheninnikov AV (2011) Structural defects in graphene. ACS Nano 5:26.  https://doi.org/10.1021/nn102598m CrossRefGoogle Scholar
  31. 31.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926.  https://doi.org/10.1063/1.445869 CrossRefGoogle Scholar
  32. 32.
    Cieplak P, Caldwell J, Kollman P (2001) Molecular mechanical models for organic and biological systems going beyond the atom centered two body additive approximation: aqueous solution free energies of methanol and N-methyl acetamide, nucleic acid base, and amide hydrogen bonding and chloroform/water partition coefficients of the nucleic acid bases. J Comput Chem 22:1048.  https://doi.org/10.1002/jcc.1065 CrossRefGoogle Scholar
  33. 33.
    Vanquelef E, Simon S, Marquant G, Garcia E, Klimerak G, Delepine JC, Cieplak P, Dupradeau FY (2011) RED Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucl Acids Res 39:W511.  https://doi.org/10.1093/Nar/Gkr288 CrossRefGoogle Scholar
  34. 34.
    Dupradeau FY, Pigache A, Zaffran T, Savineau C, Lelong R, Grivel N, Lelong D, Rosanski W, Cieplak P (2010) The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building. Phys Chem Chem Phys 12:7821.  https://doi.org/10.1039/c0cp00111b CrossRefGoogle Scholar
  35. 35.
    Case DA, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Homeyer N, Izadi S, Kovalenko A, Lee TS, LeGrand S, Li P, Lin C, Liu J, Luchko T, Luo R, Mermelstein D, Merz KM, Monard G, Nguyen H, Omelyan I, Onufriev A, Pan F, Qi R, Roe DR, Roitberg A, Sagui C, Simmerling CL, Botello-Smith WM, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Xiao L, York DM, Kollman PA (2017) AMBER 2017. University of California, San Francisco.  https://doi.org/10.13140/rg.2.2.36172.41606 Google Scholar
  36. 36.
    Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157.  https://doi.org/10.1002/jcc.20035 CrossRefGoogle Scholar
  37. 37.
    Kocman M, Pykal M, Jurecka P (2014) Electric quadrupole moment of graphene and its effect on intermolecular interactions. Phys Chem Chem Phys 16:3144.  https://doi.org/10.1039/c3cp54701a CrossRefGoogle Scholar
  38. 38.
    Sun JX, Li Y, Lin JP (2017) Studying the adsorption of DNA nanostructures on graphene in the aqueous phase using molecular dynamic simulations. J Mol Graph Model 74:16.  https://doi.org/10.1016/j.jmgm.2017.03.003 CrossRefGoogle Scholar
  39. 39.
    Raghav N, Chakraborty S, Maiti PK (2015) Molecular mechanism of water permeation in a helium impermeable graphene and graphene oxide membrane. Phys Chem Chem Phys 17:20557.  https://doi.org/10.1039/c5cp02410b CrossRefGoogle Scholar
  40. 40.
    Borthakur P, Boruah PK, Hussain N, Sharma B, Das MR, Matic S, Reha D, Minofar B (2016) Experimental and molecular dynamics simulation study of specific ion effect on the graphene oxide surface and investigation of the influence on reactive extraction of model dye molecule at water–organic interface. J Phys Chem C 120:14088.  https://doi.org/10.1021/acs.jpcc.6b02787 CrossRefGoogle Scholar
  41. 41.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089.  https://doi.org/10.1063/1.464397 CrossRefGoogle Scholar
  42. 42.
    Kim HS, Huang SM, Yingling YG (2016) Sequence dependent interaction of single stranded DNA with graphitic flakes: atomistic molecular dynamics simulations. MRS Advances 1:1883.  https://doi.org/10.1557/adv.2016.91 CrossRefGoogle Scholar
  43. 43.
    Kim HS, Farmer BL, Yingling YG (2017) Effect of graphene oxidation rate on adsorption of poly-thymine single stranded DNA. Adv Mater Interfaces 4:1601168.  https://doi.org/10.1002/admi CrossRefGoogle Scholar
  44. 44.
    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781.  https://doi.org/10.1002/jcc.20289 CrossRefGoogle Scholar
  45. 45.
    Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: software for Processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9:3084.  https://doi.org/10.1021/ct400341p CrossRefGoogle Scholar
  46. 46.
    Kostjukov VV, Khomytova NM, Davies DB, Evstigneev MP (2008) Electrostatic contribution to the energy of binding of aromatic ligands with DNA. Biopolymers 89:680.  https://doi.org/10.1002/bip.20985 CrossRefGoogle Scholar
  47. 47.
    Akca S, Foroughi A, Frochtzwajg D, Postma HWC (2011) Competing Interactions in DNA Assembly on Graphene. PLoS ONE 6:e18442.  https://doi.org/10.1371/journal.pone.0018442 CrossRefGoogle Scholar
  48. 48.
    Chen JL, Wang XG, Dai CQ, Chen SD, Tu YS (2014) Adsorption of GA module onto graphene and graphene oxide: a molecular dynamics simulation study. Physica E 62:59.  https://doi.org/10.1016/j.physe.2014.04.021 CrossRefGoogle Scholar
  49. 49.
    Baweja L, Balamurugan K, Subramanian V, Dhawan A (2013) Hydration patterns of graphene-based nanomaterials (GBNMs) play a major role in the stability of a helical protein: a molecular dynamics simulation study. Langmuir 29:14230.  https://doi.org/10.1021/La4033805 CrossRefGoogle Scholar
  50. 50.
    Grant AM, Kim HS, Dupnock TL, Hu K, Yingling YG, Tsukruk VV (2016) Silk Fibroin–Substrate interactions at heterogeneous nanocomposite interfaces. Adv Funct Mater 26:6380.  https://doi.org/10.1002/adfm.201601268 CrossRefGoogle Scholar
  51. 51.
    Medhekar NV, Ramasubramaniam A, Ruoff RS, Shenoy VB (2010) Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties. ACS Nano 4:2300.  https://doi.org/10.1021/nn901934u CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations