Skip to main content
Log in

Differentiating between intergranular and transgranular fracture in polycrystalline aggregates

  • Interface Behavior
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The competition between intergranular (IG) and transgranular (TG) fracture in fcc polycrystalline aggregates with physically representative GB misorientation distributions comprised of random low-angle, random high-angle, and coincident site lattice (CSL) GBs has been investigated. Physically-based critical conditions for IG fracture, due to the formation of dislocation pileups, and TG fracture, due to the propagation of cracks on cleavage planes, were coupled to a dislocation-density-based crystal plasticity formulation and a computational fracture scheme for crack branching to investigate how dislocation–GB interactions influence dislocation transmission, pileup formation, and local failure modes. The predictions indicate that aggregates with a large fraction of random and CSL high-angle GBs are dominated by IG fracture, as low GB transmission leads to extensive dislocation-density pileup formation and localized stress accumulations that induce IG fracture. Aggregates with a majority of low-angle GBs are dominated by TG failure, which is consistent with experimental observations. This investigation provides a fundamental understanding of the physical mechanisms governing IG and TG fracture in polycrystalline aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Watanabe T (2011) Grain boundary engineering: historical perspective and future prospects. J Mater Sci 46:4095–4115. https://doi.org/10.1007/s10853-011-5393-z

    Article  Google Scholar 

  2. Lee TC, Robertson IM, Birnbaum HK (1989) Prediction of slip transfer mechanisms across grain boundaries. Scr Metall 23:799–803. https://doi.org/10.1016/0036-9748(89)90534-6

    Article  Google Scholar 

  3. Su J-Q, Demura M, Hirano T (2003) Mechanical behaviour of Σ3 boundaries in Ni3Al. Acta Mater 51:2505–2515. https://doi.org/10.1016/S1359-6454(03)00047-8

    Article  Google Scholar 

  4. Zaefferer S, Kuo J-C, Zhao Z et al (2003) On the influence of the grain boundary misorientation on the plastic deformation of aluminum bicrystals. Acta Mater 51:4719–4735. https://doi.org/10.1016/S1359-6454(03)00259-3

    Article  Google Scholar 

  5. Kim T, Hong KT, Lee KS (2003) The relationship between the fracture toughness and grain boundary character distribution in polycrystalline NiAl. Intermetallics 11:33–39. https://doi.org/10.1016/S0966-9795(02)00167-X

    Article  Google Scholar 

  6. Zhang ZF, Eckert ZGW (2003) What types of grain boundaries can be passed through by persistent slip bands? J Mater Res 18:1031–1034

    Article  Google Scholar 

  7. Robertson IM, Lee TC, Birnbaum HK (1992) Application of the in situ TEM deformation technique to observe how “clean” and doped grain boundaries respond to local stress concentrations. Ultramicroscopy 40:330–338. https://doi.org/10.1016/0304-3991(92)90130-C

    Article  Google Scholar 

  8. Miyamoto H, Koga H, Mimaki T, Hashimoto S (2001) Intergranular stress corrosion cracking of pure copper \( \langle 111\rangle \) tilt bicrystals. Interface Sci 9:281–286. https://doi.org/10.1023/A:1015167030009

    Article  Google Scholar 

  9. Wang J-S, Anderson PM (1991) Fracture behavior of embrittled F.C.C. metal bicrystals. Acta Metall Mater 39:779–792. https://doi.org/10.1016/0956-7151(91)90278-9

    Article  Google Scholar 

  10. Suzuki A, Gigliotti MFX, Subramanian PR (2011) Novel technique for evaluating grain boundary fracture strength in metallic materials. Scr Mater 64:1063–1066. https://doi.org/10.1016/j.scriptamat.2011.02.024

    Article  Google Scholar 

  11. Jin YJ, Lu H, Yu C, Xu JJ (2013) Study on grain boundary character and strain distribution of intergranular cracking in the CGHAZ of T23 steel. Mater Charact 84:216–224. https://doi.org/10.1016/j.matchar.2013.08.004

    Article  Google Scholar 

  12. Lee TC, Robertson IM, Birnbaum HK (1992) Interaction of dislocations with grain boundaries in Ni3Al. Acta Metall Mater 40:2569–2579. https://doi.org/10.1016/0956-7151(92)90326-A

    Article  Google Scholar 

  13. Wu Q, Zikry MA (2016) Microstructural modeling of transgranular and intergranular fracture in crystalline materials with coincident site lattice grain-boundaries: σ3 and σ17b bicrystals. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2016.02.039

    Google Scholar 

  14. Kobayashi S, Tsurekawa S, Watanabe T (2006) Structure-dependent triple junction hardening and intergranular fracture in molybdenum. Philos Mag 86:5419–5429

    Article  Google Scholar 

  15. Watanabe T, Tsurekawa S (2004) Toughening of brittle materials by grain boundary engineering. Mater Sci Eng A 387:447–455. https://doi.org/10.1016/j.msea.2004.01.140

    Article  Google Scholar 

  16. Randle V, Coleman M (2009) A study of low-strain and medium-strain grain boundary engineering. Acta Mater 57:3410–3421. https://doi.org/10.1016/j.actamat.2009.04.002

    Article  Google Scholar 

  17. Pan Y, Adams BL, Olson T, Panayotou N (1996) Grain-boundary structure effects on intergranular stress corrosion cracking of alloy X-750. Acta Mater 44:4685–4695. https://doi.org/10.1016/S1359-6454(96)00125-5

    Article  Google Scholar 

  18. Bechtle S, Kumar M, Somerday BP et al (2009) Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials. Acta Mater 57:4148–4157. https://doi.org/10.1016/j.actamat.2009.05.012

    Article  Google Scholar 

  19. Gertsman VY, Bruemmer SM (2001) Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys. Acta Mater 49:1589–1598. https://doi.org/10.1016/S1359-6454(01)00064-7

    Article  Google Scholar 

  20. Ohfuji T, Suzuki S, Takaki S, Kimura H (1992) Low temperature fracture of high purity iron and its relationship to the grain boundary character. Mater Trans JIM 33:138–142

    Article  Google Scholar 

  21. Watanabe T, Tsurekawa S (1999) The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering. Acta Mater 47:4171–4185. https://doi.org/10.1016/S1359-6454(99)00275-X

    Article  Google Scholar 

  22. Lin P, Palumbo G, Erb U, Aust KT (1995) Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600. Scr Metall Mater 33:1387–1392. https://doi.org/10.1016/0956-716X(95)00420-Z

    Article  Google Scholar 

  23. Aust KT, Erb U, Palumbo G (1994) Interface control for resistance to intergranular cracking. Mater Sci Eng A 176:329–334. https://doi.org/10.1016/0921-5093(94)90995-4

    Article  Google Scholar 

  24. Palumbo G, Lehockey EM, Lin P, Erb U, Aust K (1996) A grain boundary engineering approach to materials reliability. MRS Proceedings 458:273. https://doi.org/10.1557/PROC-458-273

  25. de Koning M, Kurtz RJ, Bulatov VV et al (2003) Modeling of dislocation–grain boundary interactions in FCC metals. J Nucl Mater 323:281–289. https://doi.org/10.1016/j.jnucmat.2003.08.008

    Article  Google Scholar 

  26. Sangid MD, Ezaz T, Sehitoglu H, Robertson IM (2011) Energy of slip transmission and nucleation at grain boundaries. Acta Mater 59:283–296

    Article  Google Scholar 

  27. Abuzaid WZ, Sangid MD, Carroll JD et al (2012) Slip transfer and plastic strain accumulation across grain boundaries in Hastelloy X. J Mech Phys Solids 60:1201–1220. https://doi.org/10.1016/j.jmps.2012.02.001

    Article  Google Scholar 

  28. Lagow B, Robertson I, Jouiad M et al (2001) Observation of dislocation dynamics in the electron microscope. Mater Sci Eng A 309:445–450. https://doi.org/10.1016/S0921-5093(00)01699-3

    Article  Google Scholar 

  29. Armstrong DEJ, Wilkinson AJ, Roberts SG (2011) Micro-mechanical measurements of fracture toughness of bismuth embrittled copper grain boundaries. Philos Mag Lett 91:394–400. https://doi.org/10.1080/09500839.2011.573813

    Article  Google Scholar 

  30. Gourgues A-F (2002) Electron backscatter diffraction and cracking. Mater Sci Technol 18:119–133

    Article  Google Scholar 

  31. Kacher J, Eftink BP, Cui B, Robertson IM (2014) Dislocation interactions with grain boundaries. Curr Opin Solid State Mater Sci 18:227–243. https://doi.org/10.1016/j.cossms.2014.05.004

    Article  Google Scholar 

  32. Liu GS, House SD, Kacher J et al (2014) Electron tomography of dislocation structures. Mater Charact 87:1–11. https://doi.org/10.1016/j.matchar.2013.09.016

    Article  Google Scholar 

  33. Bond GM, Robertson IM, Birnbaum HK (1987) Effect of boron on the mechanism of strain transfer across grain boundaries in Ni3Al. J Mater Res 2:436–440. https://doi.org/10.1557/JMR.1987.0436

    Article  Google Scholar 

  34. Zikry MA (1994) An accurate and stable algorithm for high strain-rate finite strain plasticity. Comput Struct 50:337–350. https://doi.org/10.1016/0045-7949(94)90004-3

    Article  Google Scholar 

  35. Ziaei S, Zikry MA (2015) Modeling the effects of dislocation–density interaction, generation, and recovery on the behavior of H.C.P materials. Metall Mater Trans A 46:4478–4490. https://doi.org/10.1007/s11661-014-2635-0

    Article  Google Scholar 

  36. Asaro RJ, Rice JR (1977) Strain localization in ductile single crystals. J Mech Phys Solids 25:309–338. https://doi.org/10.1016/0022-5096(77)90001-1

    Article  Google Scholar 

  37. Franciosi P, Berveiller M, Zaoui A (1980) Latent hardening in copper and aluminium single crystals. Acta Metall 28:273–283. https://doi.org/10.1016/0001-6160(80)90162-5

    Article  Google Scholar 

  38. Zikry MA, Kao M (1996) Dislocation based multiple-slip crystalline constitutive formulation for finite-strain plasticity. Scr Mater 34:1115–1121. https://doi.org/10.1016/1359-6462(95)00629-X

    Article  Google Scholar 

  39. Shanthraj P, Zikry MA (2011) Dislocation density evolution and interactions in crystalline materials. Acta Mater 59:7695–7702. https://doi.org/10.1016/j.actamat.2011.08.041

    Article  Google Scholar 

  40. Lim LC, Raj R (1985) Continuity of slip screw and mixed crystal dislocations across bicrystals of nickel at 573 K. Acta Metall 33:1566–1583

    Google Scholar 

  41. Ma A, Roters F, Raabe D (2006) Studying the effect of grain boundaries in dislocation density based crystal-plasticity finite element simulations. Int J Solids Struct 43:7287–7303. https://doi.org/10.1016/j.ijsolstr.2006.07.006

    Article  Google Scholar 

  42. Shantraj P, Zikry MA (2013) Microstructurally induced fracture nucleation and propagation in martensitic steels. J Mech Phys Solids 61:1091–1105

    Article  Google Scholar 

  43. Scardia L, Peerlings RHJ, Peletier MA, Geers MGD (2014) Mechanics of dislocation pile-ups: a unification of scaling regimes. J Mech Phys Solids 70:42–61. https://doi.org/10.1016/j.jmps.2014.04.014

    Article  Google Scholar 

  44. Tesař K, Jäger A (2014) Electron backscatter diffraction analysis of the crack development induced by uniaxial tension in commercially pure titanium. Mater Sci Eng A 616:155–160. https://doi.org/10.1016/j.msea.2014.08.028

    Article  Google Scholar 

  45. Wan VVC, Cuddihy MA, Jiang J et al (2016) An HR-EBSD and computational crystal plasticity investigation of microstructural stress distributions and fatigue hotspots in polycrystalline copper. Acta Mater 115:45–57. https://doi.org/10.1016/j.actamat.2016.05.033

    Article  Google Scholar 

  46. Wu Q, Zikry MA (2014) Microstructural modeling of crack nucleation and propagation in high strength martensitic steels. Int J Solids Struct. https://doi.org/10.1016/j.ijsolstr.2014.08.021

    Google Scholar 

  47. Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193:3523–3540. https://doi.org/10.1016/j.cma.2003.12.041

    Article  Google Scholar 

  48. Rezvanian O, Zikry MA, Rajendran AM (2008) Microstructural modeling in f.c.c. crystalline materials in a unified dislocation-density framework. Mater Sci Eng A 494:80–85

    Article  Google Scholar 

  49. Wo P, Ngan AHW (2004) Investigation of slip transmission behavior across grain boundaries in polycrystalline Ni3Al using nanoindentation. J Mater Res 19:189–201. https://doi.org/10.1557/jmr.2004.19.1.189

    Article  Google Scholar 

  50. Kobayashi S, Maruyama T, Saito S et al (2014) In situ observations of crack propagation and role of grain boundary microstructure in nickel embrittled by sulfur. J Mater Sci 49:4007–4017. https://doi.org/10.1007/s10853-014-8056-z

    Article  Google Scholar 

  51. Lee TC, Robertson IM, Birnbaum HK (1989) An HVEM In situ deformation study of nickel doped with sulfur. Acta Metall 37:407–415. https://doi.org/10.1016/0001-6160(89)90225-3

    Article  Google Scholar 

  52. Watanabe T (1994) The impact of grain boundary character distribution on fracture in polycrystals. Mater Sci Eng A 176:39–49. https://doi.org/10.1016/0921-5093(94)90957-1

    Article  Google Scholar 

  53. Tromans D, Sun RH (1996) Intergranular/transgranular fatigue of copper: influence of environment on crack path and propagation rates. Mater Sci Eng A 219:56–65. https://doi.org/10.1016/S0921-5093(96)10422-6

    Article  Google Scholar 

  54. Patriarca L, Abuzaid W, Sehitoglu H, Maier HJ (2013) Slip transmission in bcc FeCr polycrystal. Mater Sci Eng A 588:308–317. https://doi.org/10.1016/j.msea.2013.08.050

    Article  Google Scholar 

  55. Zhang L, Lu C, Tieu K (2016) A review on atomistic simulation of grain boundary behaviors in face-centered cubic metals. Comput Mater Sci 118:180–191. https://doi.org/10.1016/j.commatsci.2016.03.021

    Article  Google Scholar 

  56. Kumar K, Van Swygenhoven H, Suresh S (2003) Mechanical behavior of nanocrystalline metals and alloys. Acta Mater 51:5743–5774. https://doi.org/10.1016/j.actamat.2003.08.032

    Article  Google Scholar 

  57. Lim LC, Watanabe T (1990) Fracture toughness and brittle-ductile transition controlled by grain boundary character distribution (GBCD) in polycrystals. Acta Metall Mater 38:2507–2516. https://doi.org/10.1016/0956-7151(90)90262-F

    Article  Google Scholar 

  58. Watanabe T, Fujii H, Oikawa H, Arai KI (1989) Grain boundaries in rapidly solidified and annealed Fe-6.5 mass% Si polycrystalline ribbons with high ductility. Acta Metall 37:941–952. https://doi.org/10.1016/0001-6160(89)90021-7

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by Office of Naval Research (Grant No. N00014-10-1-0958) MURI Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Zikry.

Ethics declarations

Conflict of interest

There are no conflicts of interest that exist for the manuscript’s authors that could potentially influence or bias the submitted work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bond, D.M., Zikry, M.A. Differentiating between intergranular and transgranular fracture in polycrystalline aggregates. J Mater Sci 53, 5786–5798 (2018). https://doi.org/10.1007/s10853-017-1847-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1847-2

Keywords

Navigation