Skip to main content
Log in

Implementation of a phase field model for simulating evolution of two powder particles representing microstructural changes during sintering

  • Interface Behavior
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, we present a multiphysics phase field model for capturing microstructural evolution during solid-state sintering processes. The model incorporates modifications of phase field equations to include rigid-body motion, elastic deformation, and heat conduction. The model correctly predicts consolidation of powder particles during sintering because of two competing mechanisms—neck formation and grain growth. The simulations show that the material undergoes three distinctive stages during the sintering process—stage I where neck or grain boundary between two particles is formed, stage II in which neck length stabilizes and growth or shrinkage of individual particles initiates, and finally stage III with rapid grain growth leading to disappearance of one of the grains. The driving forces corresponding to different mechanisms are found to be dependent on the radius of the particles, curvature at the neck location, surface energy, and grain boundary energy. In addition, variation in temperature is found to significantly influence the microstructure evolution by affecting the diffusivity and grain boundary mobility of the sintered material. The model is also used to compare sintering simulation results in 2D and 3D. It is observed that due to higher curvature in 3D, model predicts faster microstructural evolution in 3D when compared to 2D simulations under identical boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  1. Langer J, Hoffmann MJ, Guillon O (2009) Direct comparison between hot pressing and electric field-assisted sintering of submicron alumina. Acta Mater 57(18):5454–5465

    Article  Google Scholar 

  2. Stanciu LA, Kodash VY, Groza JR (2001) Effects of heating rate on densification and grain growth during field-assisted sintering of α-Al2O3 and MoSi2 powders. Metall Mater Trans A 32(10):2633–2638

    Article  Google Scholar 

  3. Chaim R et al (2008) Sintering and densification of nanocrystalline ceramic oxide powders: a review. Adv Appl Ceram 107(3):159–169

    Article  Google Scholar 

  4. Dahl P et al (2007) Densification and properties of zirconia prepared by three different sintering techniques. Ceram Int 33(8):1603–1610

    Article  Google Scholar 

  5. Guyot P et al (2014) Hot pressing and spark plasma sintering of alumina: discussion about an analytical modelling used for sintering mechanism determination. Scripta Mater 84–85:35–38

    Article  Google Scholar 

  6. Groza JR, Cirtis JD, Krämer M (2000) Field assisted sintering of nanocrystalline titanium nitride. J Am Ceram Soc 83(5):1281–1283

    Article  Google Scholar 

  7. Groza JR (2000) Sintering activation by electrical field. Mater Sci Eng 287:8

    Article  Google Scholar 

  8. Muccillo R, Muccillo ENS (2013) An experimental setup for shrinkage evaluation during electric field-assisted flash sintering: application to yttria-stabilized zirconia. J Eur Ceram Soc 33(3):515–520

    Article  Google Scholar 

  9. Grigoryev E (2011) High voltage electric discharge consolidation of tungsten carbide - cobalt powder. In: Cuppoletti J (ed) Nanocomposites with unique properties and applications in medicine and industry. InTech

  10. Groza JR, Garcia M, Schneider JA (2001) Surface effect in field assisted sintering. J Mater Res 16(01):286–292

    Article  Google Scholar 

  11. Vanmeensel K et al (2005) Modelling of the temperature distribution during field assisted sintering. Acta Mater 53(16):4379–4388

    Article  Google Scholar 

  12. Tiwari D, Basu B, Biswas K (2009) Simulation of thermal and electric field evolution during spark plasma sintering. Ceram Int 35(2):699–708

    Article  Google Scholar 

  13. Maizza G et al (2007) Relation between microstructure, properties and spark plasma sintering (SPS) parameters of pure ultrafine WC powder. Sci Technol Adv Mater 8(7–8):644–654

    Article  Google Scholar 

  14. Kraft T, Riedel H (2004) Numerical simulation of solid state sintering; model and application. J Eur Ceram Soc 24(2):345–361

    Article  Google Scholar 

  15. Olevsky E, Froyen L (2006) Constitutive modeling of spark-plasma sintering of conductive materials. Scripta Mater 55(12):1175–1178

    Article  Google Scholar 

  16. Braginsky M, Tikare V, Olevsky E (2005) Numerical simulation of solid state sintering. Int J Solids Struct 42(2):621–636

    Article  Google Scholar 

  17. Tikare V, Braginsky M, Olevsky EA (2003) Numerical simulation of solid-state sintering: I, sintering of three particles. J Am Ceram Soc 86(1):49–53

    Article  Google Scholar 

  18. Tikare V et al (2010) Numerical simulation of microstructural evolution during sintering at the mesoscale in a 3D powder compact. Comput Mater Sci 48(2):317–325

    Article  Google Scholar 

  19. Bjørk R et al (2015) Modeling the microstructural evolution during constrained sintering. J Am Ceram Soc 98(11):3490–3495

    Article  Google Scholar 

  20. Boettinger WJ et al (2002) Phase-field simulation of solidification. Annu Rev Mater Res 32(1):163–194

    Article  Google Scholar 

  21. Loginova I, Amberg G, Agren J (2001) Phase-field simulations of non-isothermal binary alloy solidification. Acta Mater 49(4):573–581

    Article  Google Scholar 

  22. Osório WR, Freire CMA, Garcia A (2005) Dendritic solidification microstructure affecting mechanical and corrosion properties of a Zn4Al alloy. J Mater Sci 40(17):4493–4499. https://doi.org/10.1007/s10853-005-0852-z

    Article  Google Scholar 

  23. Uehara T, Tsujino T (2005) Phase field simulation of stress evolution during solidification. J Cryst Growth 275(1–2):e219–e224

    Article  Google Scholar 

  24. Grafe U et al (2000) Simulations of the initial transient during directional solidification of multicomponent alloys using the phase field method. Modell Simul Mater Sci Eng 8(6):871–879

    Article  Google Scholar 

  25. Hu S, Henager CH Jr (2009) Phase-field modeling of void lattice formation under irradiation. J Nucl Mater 394(2–3):155–159

    Article  Google Scholar 

  26. Hu SY, Henager CH Jr (2010) Phase-field simulation of void migration in a temperature gradient. Acta Mater 58(9):3230–3237

    Article  Google Scholar 

  27. Li Y et al (2011) Phase-field modeling of void evolution and swelling in materials under irradiation. Sci China Phys Mech Astron 54(5):856–865

    Article  Google Scholar 

  28. Millett PC et al (2011) Phase-field simulation of irradiated metals: part I: void kinetics. Comput Mater Sci 50(3):949–959

    Article  Google Scholar 

  29. Millett PC et al (2009) Void nucleation and growth in irradiated polycrystalline metals: a phase-field model. Modell Simul Mater Sci Eng 17(6):064003

    Article  Google Scholar 

  30. Millett PC, Tonks M (2011) Application of phase-field modeling to irradiation effects in materials. Curr Opin Solid State Mater Sci 15(3):125–133

    Article  Google Scholar 

  31. Ahmed K et al (2014) Phase field simulation of grain growth in porous uranium dioxide. J Nucl Mater 446(1–3):90–99

    Article  Google Scholar 

  32. Anderson MP et al (1984) Computer simulation of grain growth—I. Kinetics. Acta Metall 32(5):783–791

    Article  Google Scholar 

  33. Kazaryan A et al (2000) Generalized phase-field model for computer simulation of grain growth in anisotropic systems. Phys Rev B 61(21):14275–14278

    Article  Google Scholar 

  34. Tikare V, Holm EA (1998) Simulation of grain growth and pore migration in a thermal gradient. J Am Ceram Soc 81(3):480–484

    Article  Google Scholar 

  35. Wang YU (2006) Computer modeling and simulation of solid-state sintering: a phase field approach. Acta Mater 54(4):953–961

    Article  Google Scholar 

  36. Deng J (2012) A phase field model of sintering with direction-dependent diffusion. Mater Trans 53(2):385–389

    Article  Google Scholar 

  37. Ahmed K et al (2013) Phase field modeling of the effect of porosity on grain growth kinetics in polycrystalline ceramics. Modell Simul Mater Sci Eng 21(6):065005

    Article  Google Scholar 

  38. Chanthapan S et al (2012) Sintering of tungsten powder with and without tungsten carbide additive by field assisted sintering technology. Int J Refract Metal Hard Mater 31:114–120

    Article  Google Scholar 

  39. Biswas S et al (2016) A study of the evolution of microstructure and consolidation kinetics during sintering using a phase field modeling based approach. Extreme Mech Lett 7:78–89

    Article  Google Scholar 

  40. Gaston DR, Peterson JW, Permann CJ, Andrš D, Slaughter AE, Miller JM (2014) Continuous integration for concurrent computational framework and application development. J Open Res Softw 2(1):e10. https://doi.org/10.5334/jors.as

    Article  Google Scholar 

  41. Gaston D et al (2009) MOOSE: A parallel computational framework for coupled systems of nonlinear equations. Nucl Eng Des 239(10):1768–1778

    Article  Google Scholar 

  42. Tonks M, Gaston D, Millett P, Andrš D, Talbot P (2012) An object-oriented finite element framework for multiphysics phase field simulations. Comput Mater Sci 51(1):20–29

    Article  Google Scholar 

  43. Novascone SR et al (2015) Evaluation of coupling approaches for thermomechanical simulations. Nucl Eng Des 295:910–921

    Article  Google Scholar 

  44. Tonks MR et al (2016) Development of a multiscale thermal conductivity model for fission gas in UO2. J Nucl Mater 469:89–98

    Article  Google Scholar 

  45. Moelans N, Blanpain B, Wollants P (2008) An introduction to phase-field modeling of microstructure evolution. Calphad 32(2):268–294

    Article  Google Scholar 

  46. Verma D et al (2016) Relating interface evolution to interface mechanics based on interface properties. JOM 69(1):30–38

    Article  Google Scholar 

  47. Kumar V, Fang ZZ, Fife PC (2010) Phase field simulations of grain growth during sintering of two unequal-sized particles. Mater Sci Eng, A 528(1):254–259

    Article  Google Scholar 

  48. Zhang R-J et al (2014) Thermodynamic consistent phase field model for sintering process with multiphase powders. Trans Nonferrous Met Soc China 24(3):783–789

    Article  Google Scholar 

  49. Permann CJ et al (2016) Order parameter re-mapping algorithm for 3D phase field model of grain growth using FEM. Comput Mater Sci 115:18–25

    Article  Google Scholar 

  50. Khachaturyan A-G (1983) Theory of structural transformations in solids. Wiley, Hoboken

    Google Scholar 

  51. Hu SY, Chen LQ (2001) A phase-field model for evolving microstructures with strong elastic inhomogeneity. Acta Mater 49(11):1879–1890

    Article  Google Scholar 

  52. Yongsheng L et al (2014) Effects of temperature gradient and elastic strain on spinodal decomposition and microstructure evolution of binary alloys. Modell Simul Mater Sci Eng 22(3):035009

    Article  Google Scholar 

  53. Tonks M et al (2010) Analysis of the elastic strain energy driving force for grain boundary migration using phase field simulation. Scripta Mater 63(11):1049–1052

    Article  Google Scholar 

  54. Zhang L et al (2013) A quantitative comparison between and elements for solving the Cahn–Hilliard equation. J Comput Phys 236:74–80

    Article  Google Scholar 

  55. Grujicic M, Zhao H, Krasko GL (1997) Atomistic simulation of Sigma 3 (111) grain boundary fracture in tungsten containing various impurities. Int J Refract Metal Hard Mater 15(5–6):341–355

    Article  Google Scholar 

  56. Lassner E, Schubert W-D (1999) Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds. Springer, New York

    Book  Google Scholar 

  57. Johnson RA (1982) Point-defect calculations for tungsten. Phys. Rev. B 27(4):2014–2018

    Article  Google Scholar 

  58. Lee JS, Minkwitz C, Herzig C (1997) Grain boundary self-diffusion in polycrystalline tungsten at low temperatures. Phys Stat Sol 202:931–940

    Article  Google Scholar 

  59. Kumar V (2011) Simulations and modeling of unequal sized particles sintering. In: Department of metallurgical engineering. The University of Utah

  60. Schwen D et al (2017) Rapid multiphase-field model development using a modular free energy based approach with automatic differentiation in MOOSE/MARMOT. Comput Mater Sci 132:36–45

    Article  Google Scholar 

  61. Millett PC et al (2012) Phase-field simulation of intergranular bubble growth and percolation in bicrystals. J Nucl Mater 425(1–3):130–135

    Article  Google Scholar 

  62. Chen L-Q (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32(1):113–140

    Article  Google Scholar 

  63. Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys 28(2):258–267

    Article  Google Scholar 

  64. Gao Z et al (2012) Kinetics of densification and grain growth of pure tungsten during spark plasma sintering. Metall Mater Trans B 43(6):1608–1614

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the funding received from DoE-NETL supporting this research work. We are grateful to the MOOSE developers, especially Cody Permann and Michael Tonks, and the user community for helping with technical discussions to overcome modeling hurdles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Tomar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S., Schwen, D. & Tomar, V. Implementation of a phase field model for simulating evolution of two powder particles representing microstructural changes during sintering. J Mater Sci 53, 5799–5825 (2018). https://doi.org/10.1007/s10853-017-1846-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1846-3

Keywords

Navigation