Skip to main content
Log in

Review: mechanical behavior of metal/ceramic interfaces in nanolayered composites—experiments and modeling

  • Interface Behavior
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Recent experimental and modeling studies in nanolayered metal/ceramic composites are reviewed, with focus on the mechanical behaviors of metal/nitrides interfaces. The experimental and modeling studies of the slip systems in bulk TiN are reviewed first. Then, the experimental studies of interfaces, including co-deformation mechanism by micropillar compression tests, in situ TEM straining tests for the dynamic process of the co-deformation, thickness-dependent fracture behavior, and interrelationship among the interfacial bonding, microstructure, and mechanical response, are reviewed for the specific material systems of Al/TiN and Cu/TiN multilayers at nanoscale. The modeling studies reviewed cover first-principles density functional theory-based modeling, atomistic molecular dynamics simulations, and mesoscale modeling of nanolayered composites using discrete dislocation dynamics. The phase transformation between zinc-blende and wurtzite AlN phases in Al/AlN multilayers at nanoscale is also reviewed. Finally, a summary and perspective of possible research directions and challenges are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

(Reproduced with permission from [52])

Figure 2

(Reproduced with permission from [52])

Figure 3

(Reproduced with permission from [9])

Figure 4

(Reproduced with permission from [10])

Figure 5

(Reproduced with permission from [10])

Figure 6

(Reproduced with permission from [95])

Figure 7

(Reproduced with permission from [96])

Figure 8

(Reproduced with permission from [97])

Figure 9

(Reproduced with permission from [72])

Figure 10

(Reproduced with permission from [72])

Figure 11

(Reproduced with permission from [69])

Figure 12

(Reproduced with permission from [85])

Figure 13

(Reproduced with permission from [85])

Figure 14

(Reproduced with permission from [86])

Figure 15

(Reproduced with permission from [53])

Figure 16

(Reproduced with permission from [53])

Figure 17

(Reproduced with permission from [54])

Similar content being viewed by others

References

  1. Sinnott SB, Dickey EC (2003) Ceramic/metal interface structures and their relationship to atomic- and meso-scale properties. Mat Sci Eng R 43(1–2):1–59. https://doi.org/10.1016/J.Mser.2003.09.001

    Article  Google Scholar 

  2. Padture NP, Gell M, Jordan EH (2002) Materials science—thermal barrier coatings for gas-turbine engine applications. Science 296(5566):280–284

    Article  Google Scholar 

  3. Howe JM (1993) Bonding, structure, and properties of metal-ceramic interfaces. 1. Chemical bonding, chemical-reaction, and interfacial structure. Int Mater Rev 38(5):233–256

    Article  Google Scholar 

  4. Finnis MW (1996) The theory of metal-ceramic interfaces. J Phys Condens Matter 8(32):5811–5836. https://doi.org/10.1088/0953-8984/8/32/003

    Article  Google Scholar 

  5. Evans AG, Hutchinson JW, Wei Y (1999) Interface adhesion: effects of plasticity and segregation. Acta Mater 47(15–16):4093–4113. https://doi.org/10.1016/S1359-6454(99)00269-4

    Article  Google Scholar 

  6. Zhang W, Smith JR (2000) Nonstoichiometric interfaces and Al2O3 adhesion with Al and Ag. Phys Rev Lett 85(15):3225–3228. https://doi.org/10.1103/Physrevlett.85.3225

    Article  Google Scholar 

  7. Bhattacharyya D, Mara NA, Hoagland RG, Misra A (2008) Nanoindentation and microstructural studies of Al/TiN multilayers with unequal volume fractions. Scr Mater 58(11):981–984

    Article  Google Scholar 

  8. Bhattacharyya D, Mara NA, Dickerson P, Hoagland RG, Misra A (2010) A transmission electron microscopy study of the deformation behavior underneath nanoindents in nanoscale Al-TiN multilayered composites. Philos Mag 90(13):1711–1724

    Article  Google Scholar 

  9. Bhattacharyya D, Mara NA, Dickerson P, Hoagland RG, Misra A (2011) Compressive flow behavior of Al–TiN multilayers at nanometer scale layer thickness. Acta Mater 59(10):3804–3816

    Article  Google Scholar 

  10. Li N, Wang H, Misra A, Wang J (2014) In situ nanoindentation study of plastic co-deformation in Al–TiN nanocomposites. Sci Rep-Uk 4:6633. https://doi.org/10.1038/Srep06633

    Article  Google Scholar 

  11. Hoagland RG, Hirth JP, Misra A (2006) On the role of weak interfaces in blocking slip in nanoscale layered composites. Philos Mag 86(23):3537–3558. https://doi.org/10.1080/14786430600669790

    Article  Google Scholar 

  12. Liu XY, Hoagland RG, Wang J, Germann TC, Misra A (2010) The influence of dilute heats of mixing on the atomic structures, defect energetics and mechanical properties of fcc-bcc interfaces. Acta Mater 58(13):4549–4557. https://doi.org/10.1016/j.actamat.2010.05.008

    Article  Google Scholar 

  13. Wang J, Misra A, Hoagland RG, Hirth JP (2012) Slip transmission across fcc/bcc interfaces with varying interface shear strengths. Acta Mater 60(4):1503–1513. https://doi.org/10.1016/J.Actamat.2011.11.047

    Article  Google Scholar 

  14. Wang J, Misra A (2014) Strain hardening in nanolayered thin films. Curr Opin Solid State M 18(1):19–28. https://doi.org/10.1016/J.Cossms.2013.10.003

    Article  Google Scholar 

  15. Wang J, Zhou Q, Shao S, Misra A (2017) Strength and plasticity of nanolaminated materials. Mater Res Lett 5(1):1–19. https://doi.org/10.1080/21663831.2016.1225321

    Article  Google Scholar 

  16. Abadias G, Dub S, Shmegera R (2006) Nanoindentation hardness and structure of ion beam sputtered TiN, W and TiN/W multilayer hard coatings. Surf Coat Technol 200(22):6538–6543. https://doi.org/10.1016/j.surfcoat.2005.11.053

    Article  Google Scholar 

  17. Shih K, Dove D (1992) Ti/Ti–N Hf/Hf–N and W/W–N multilayer films with high mechanical hardness. Appl Phys Lett 61(6):654–656

    Article  Google Scholar 

  18. He JL, Li WZ, Li HD, Liu CH (1998) Plastic properties of nano-scale ceramic–metal multilayers. Surf Coat Technol 103–104:276–280. https://doi.org/10.1016/S0257-8972(98)00423-X

    Article  Google Scholar 

  19. Barnett SA, Madan A (2004) Hardness and stability of metal–nitride nanoscale multilayers. Scr Mater 50(6):739–744. https://doi.org/10.1016/j.scriptamat.2003.11.042

    Article  Google Scholar 

  20. Abadias G, Pailloux F, Dub SN (2008) Epitaxial growth and mechanical properties of (001) ZrN/W nanolaminates. Surf Coat Technol 202(15):3683–3687. https://doi.org/10.1016/j.surfcoat.2008.01.013

    Article  Google Scholar 

  21. Wen LS, Huang RF, Guo LP, Gong J, Wei TY, Chuang YZ (1993) Microstructure and mechanical properties of metal/ceramic Ti/TiN multilayers. J Magn Magn Mater 126(1):200–202. https://doi.org/10.1016/0304-8853(93)90580-U

    Article  Google Scholar 

  22. Wang X, Kolitsch A, Möller W (1997) Roughness improvement and hardness enhancement in nanoscale Al/AlN multilayered thin films. Appl Phys Lett 71(14):1951–1953

    Article  Google Scholar 

  23. Evans A, Rühle M (1990) Microstructure and fracture resistance of metal/ceramic interfaces. MRS Bull 15(10):46–50

    Article  Google Scholar 

  24. Daia MB, Aubert P, Labdi S, Sant C, Sadi F, Houdy P, Bozet J-L (2000) Nanoindentation investigation of Ti/TiN multilayers films. J Appl Phys 87(11):7753–7757

    Article  Google Scholar 

  25. Lackner JM, Waldhauser W, Major B, Major L, Kot M (2013) Plastic deformation in nano-scale multilayer materials—a biomimetic approach based on nacre. Thin Solid Films 534:417–425

    Article  Google Scholar 

  26. Dück A, Gamer N, Gesatzke W, Griepentrog M, Österle W, Sahre M, Urban I (2001) Ti/TiN multilayer coatings: deposition technique, characterization and mechanical properties. Surf Coat Technol 142:579–584

    Article  Google Scholar 

  27. Ma K, Bloyce A, Bell AT (1995) Examination of mechanical properties and failure mechanisms of TiN and Ti–TiN multilayer coatings. Surf Coat Technol 76:297–302

    Article  Google Scholar 

  28. Madan A, Y-y Wang, Barnett S, Engström C, Ljungcrantz H, Hultman L, Grimsditch M (1998) Enhanced mechanical hardness in epitaxial nonisostructural Mo/NbN and W/NbN superlattices. J Appl Phys 84(2):776–785

    Article  Google Scholar 

  29. Madan A, Barnett S, Misra A, Kung H, Nastasi M (2001) Structure, stability, and mechanical properties of epitaxial W/NbN superlattices. J Vac Sci Technol A Vac Surf Films 19(3):952–957

    Article  Google Scholar 

  30. Abadias G, Michel A, Tromas C, Jaouen C, Dub SN (2007) Stress, interfacial effects and mechanical properties of nanoscale multilayered coatings. Surf Coat Technol 202(4):844–853. https://doi.org/10.1016/j.surfcoat.2007.05.068

    Article  Google Scholar 

  31. Liu CH, Li W-Z, Li H-D (1995) Structure and hardness enhancement of Fe/TiC multilayered films. Nucl Instrum Methods Phys Res Sect B 95(3):323–326. https://doi.org/10.1016/0168-583X(94)00544-3

    Article  Google Scholar 

  32. He J, Li W, Li H, Liu C (1998) Plastic properties of nano-scale ceramic–metal multilayers. Surf Coat Technol 103:276–280

    Article  Google Scholar 

  33. Wang J, Li W-Z, Li H-D, Shi B, Luo J-B (2000) Nanoindentation study on the mechanical properties of Tic/Mo multilayers. Thin Solid Films 366(1):117–120. https://doi.org/10.1016/S0040-6090(99)00968-2

    Article  Google Scholar 

  34. Wang X, Kolitsch A, Prokert F, Möller W (1998) Ion beam assisted deposition of AlN monolithic films and Al/AlN multilayers: a comparative study. Surf Coat Technol 103:334–339. https://doi.org/10.1016/S0257-8972(98)00410-1

    Article  Google Scholar 

  35. Zhang GA, Wu ZG, Wang MX, Fan XY, Wang J, Yan PX (2007) Structure evolution and mechanical properties enhancement of Al/AlN multilayer. Appl Surf Sci 253(22):8835–8840. https://doi.org/10.1016/j.apsusc.2007.04.039

    Article  Google Scholar 

  36. Koehler J (1970) Attempt to design a strong solid. Phys Rev B 2(2):547

    Article  Google Scholar 

  37. Misra A, Hirth J, Hoagland R (2005) Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater 53(18):4817–4824

    Article  Google Scholar 

  38. Shinn M, Hultman L, Barnett SA (2011) Growth, structure, and microhardness of epitaxial TiN/NbN superlattices. J Mater Res 7(4):901–911. https://doi.org/10.1557/JMR.1992.0901

    Article  Google Scholar 

  39. Barnett SA, Madan A, Kim I, Martin K (2003) Stability of nanometer-thick layers in hard coatings. MRS Bull 28(3):169–172

    Article  Google Scholar 

  40. Lotfian S, Rodríguez M, Yazzie K, Chawla N, Llorca J, Molina-Aldareguía JM (2013) High temperature micropillar compression of Al/SiC nanolaminates. Acta Mater 61(12):4439–4451

    Article  Google Scholar 

  41. Sun P, Chu J, Lin T, Shen Y, Chawla N (2010) Characterization of nanoindentation damage in metal/ceramic multilayered films by transmission electron microscopy (TEM). Mater Sci Eng A 527(12):2985–2992

    Article  Google Scholar 

  42. Zhang X, Zhang B, Mu Y, Shao S, Wick CD, Ramachandran BR, Meng WJ (2017) Mechanical failure of metal/ceramic interfacial regions under shear loading. Acta Mater 138:224–236. https://doi.org/10.1016/j.actamat.2017.07.053

    Article  Google Scholar 

  43. Singh D, Chawla N, Tang G, Shen Y-L (2010) Micropillar compression of Al/SiC nanolaminates. Acta Mater 58(20):6628–6636

    Article  Google Scholar 

  44. Singh DR, Chawla N (2012) Scratch resistance of Al/SiC metal/ceramic nanolaminates. J Mater Res 27(1):278–283

    Article  Google Scholar 

  45. Lotfian S, Molina-Aldareguia JM, Yazzie K, Llorca J, Chawla N (2012) High-temperature nanoindentation behavior of Al/SiC multilayers. Philos Mag Lett 92(8):362–367

    Article  Google Scholar 

  46. Lotfian S, Mayer C, Chawla N, Llorca J, Misra A, Baldwin J, Molina-Aldareguía JM (2014) Effect of layer thickness on the high temperature mechanical properties of Al/SiC nanolaminates. Thin Solid Films 571:260–267

    Article  Google Scholar 

  47. Mayer C, Li N, Mara N, Chawla N (2015) Micromechanical and in situ shear testing of Al–SiC nanolaminate composites in a transmission electron microscope (TEM). Mater Sci Eng A 621:229–235

    Article  Google Scholar 

  48. Mayer C, Yang L, Singh S, Xie H, Shen Y-L, Llorca J, Molina-Aldareguia J, Chawla N (2016) Orientation dependence of indentation behavior in Al–SiC nanolaminate composites. Mater Lett 168:129–133

    Article  Google Scholar 

  49. Mayer C, Yang L, Singh S, Llorca J, Molina-Aldareguia J, Shen Y, Chawla N (2016) Anisotropy, size, and aspect ratio effects on micropillar compression of Al SiC nanolaminate composites. Acta Mater 114:25–32

    Article  Google Scholar 

  50. Yang L, Mayer C, Chawla N, Llorca J, Molina-Aldareguía J (2016) Deformation mechanisms of ultra-thin Al layers in Al/SiC nanolaminates as a function of thickness and temperature. Philos Mag 96(32–34):3336–3355

    Article  Google Scholar 

  51. Li N, Misra A, Shao S, Wang J (2015) Experimental quantification of resolved shear stresses for dislocation motion in TiN. Nano Lett 15(7):4434–4439. https://doi.org/10.1021/acs.nanolett.5b00791

    Article  Google Scholar 

  52. Li N, Yadav SK, Liu XY, Wang J, Hoagland RG, Mara N, Misra A (2015) Quantification of dislocation nucleation stress in TiN through high-resolution in situ indentation experiments and first principles calculations. Sci Rep-Uk. https://doi.org/10.1038/Srep15813

    Google Scholar 

  53. Li N, Yadav SK, Wang J, Liu XY, Misra A (2015) Growth and Stress-induced Transformation of Zinc blende AlN Layers in Al–AlN–TiN Multilayers. Sci Rep-Uk 5:18554

    Article  Google Scholar 

  54. Li Z, Yadav S, Chen Y, Li N, Liu X-Y, Wang J, Zhang S, Baldwin JK, Misra A, Mara N (2017) Mechanically controlling the reversible phase transformation from zinc blende to wurtzite in AlN. Mater Res Lett. https://doi.org/10.1080/21663831.2017.1303793

    Google Scholar 

  55. Hartford J (2000) Interface energy and electron structure for Fe/VN. Phys Rev B 61(3):2221–2229. https://doi.org/10.1103/Physrevb.61.2221

    Article  Google Scholar 

  56. Dudiy SV, Lundqvist BI (2001) First-principles density-functional study of metal-carbonitride interface adhesion: Co/TiC(001) and Co/TiN(001). Phys Rev B 64(4):045403. https://doi.org/10.1103/Physrevb.64.045403

    Article  Google Scholar 

  57. Siegel DJ, Hector LG, Adams JB (2002) First-principles study of metal-carbide/nitride adhesion: Al/VC vs Al/VN. Acta Mater 50(3):619–631

    Article  Google Scholar 

  58. Liu LM, Wang SQ, Ye HQ (2003) Adhesion of metal-carbide/nitride interfaces: Al/TiC and Al/TiN. J Phys Condens Matter 15(47):8103–8114. https://doi.org/10.1088/0953-8984/15/47/013

    Article  Google Scholar 

  59. Arya A, Carter EA (2003) Structure, bonding, and adhesion at the TiC(100)/Fe(110) interface from first principles. J Chem Phys 118(19):8982–8996. https://doi.org/10.1063/1.1565323

    Article  Google Scholar 

  60. Siegel DJ, Hector LG, Adams JB (2003) Ab initio study of Al-ceramic interfacial adhesion. Phys Rev B. https://doi.org/10.1103/Physrevb.67.092105

    Google Scholar 

  61. Liu LM, Wang SQ, Ye HQ (2004) First-principles study of polar Al/TiN(111) interfaces. Acta Mater 52(12):3681–3688. https://doi.org/10.1016/J.Actamat.2004.04.022

    Article  Google Scholar 

  62. Dudiy SV, Lundqvist BI (2004) Wetting of TiC and TiN by metals. Phys Rev B 69(12):125421. https://doi.org/10.1103/Physrevb.69.125421

    Article  Google Scholar 

  63. Zhang HZ, Liu LM, Wang SQ (2007) First-principles study of the tensile and fracture of the Al/TiN interface. Comput Mater Sci 38(4):800–806. https://doi.org/10.1016/j.commatsci.2006.05.017

    Article  Google Scholar 

  64. Bhattacharyya D, Liu XY, Genc A, Fraser HL, Hoagland RG, Misra A (2010) Heterotwin formation during growth of nanolayered Al–TiN composites. Appl Phys Lett 96(9):093113

    Article  Google Scholar 

  65. Fors DHR, Wahnstrom G (2010) Theoretical study of interface structure and energetics in semicoherent Fe(001)/MX(001) systems (M = Sc, Ti, V, Cr, Zr, Nb, Hf, Ta; X = C or N). Phys Rev B 82(19):195410. https://doi.org/10.1103/Physrevb.82.195410

    Article  Google Scholar 

  66. Yadav SK, Ramprasad R, Misra A, Liu XY (2012) First-principles study of shear behavior of Al, TiN, and coherent Al/TiN interfaces. J Appl Phys 111(8):083505

    Article  Google Scholar 

  67. Sampath S, Janisch R (2013) Ab initio prediction of the critical thickness of a precipitate. J Phys Condens Matter. https://doi.org/10.1088/0953-8984/25/35/355005

    Google Scholar 

  68. Sawada H, Taniguchi S, Kawakami K, Ozaki T (2013) First-principles study of interface structure and energy of Fe/NbC. Model Simul Mater Sci Eng. https://doi.org/10.1088/0965-0393/21/4/045012

    Google Scholar 

  69. Yadav SK, Ramprasad R, Wang J, Misra A, Liu XY (2014) First-principles study of Cu/TiN and Al/TiN interfaces: weak versus strong interfaces. Model Simul Mater Sc 22(3):035020. https://doi.org/10.1088/0965-0393/22/3/035020

    Article  Google Scholar 

  70. Fors DHR, Wahnstrom G (2011) First-principles investigation of the stability of MN and CrMN precipitates under coherency strains in α-Fe (M = V, Nb, Ta). J Appl Phys 109:113709

    Article  Google Scholar 

  71. Wu X, Sun T, Wang R, Liu L, Liu Q (2014) Energy investigations on the adhesive properties of Al/TiC interfaces: first-principles study. Phys B 449:269–273. https://doi.org/10.1016/j.physb.2014.05.037

    Article  Google Scholar 

  72. Yadav SK, Shao S, Wang J, Liu XY (2015) Structural modifications due to interface chemistry at metal-nitride interfaces. Sci Rep-Uk. https://doi.org/10.1038/Srep17380

    Google Scholar 

  73. Feldbauer G, Wolloch M, Bedolla P, Mohn P, Redinger J, Vernes A (2015) Adhesion and material transfer between contacting Al and TiN surfaces from first principles. Phys Rev B 91(16):165413

    Article  Google Scholar 

  74. Yadav SK, Wang J, Liu XY (2016) Ab initio modeling of zincblende AlN layer in Al-AlN-TiN multilayers. J Appl Phys. https://doi.org/10.1063/1.4953593

    Google Scholar 

  75. Sun T, Wu XZ, Wang R, Li WG, Liu Q (2017) First-principles study on the adhesive properties of Al/TiC interfaces: revisited. Comput Mater Sci 126:108–120. https://doi.org/10.1016/j.commatsci.2016.09.024

    Article  Google Scholar 

  76. Lin ZJ, Peng XH, Fu T, Zhao YB, Feng C, Huang C, Wang ZC (2017) Atomic structures and electronic properties of interfaces between aluminum and carbides/nitrides: a first-principles study. Phys E 89:15–20. https://doi.org/10.1016/j.physe.2017.01.025

    Article  Google Scholar 

  77. Sawada H, Taniguchi S, Kawakami K, Ozaki T (2017) Transition of the interface between iron and carbide precipitate from coherent to semi-coherent. Metals. https://doi.org/10.3390/met7070277

    Google Scholar 

  78. Baskes MI (1992) Modified embedded-atom potentials for cubic materials and impurities. Phys Rev B 46(5):2727–2742. https://doi.org/10.1103/Physrevb.46.2727

    Article  Google Scholar 

  79. Lee BJ, Baskes MI, Kim H, Cho YK (2001) Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Phys Rev B. https://doi.org/10.1103/Physrevb.64.184102

    Google Scholar 

  80. Daw MS, Baskes MI (1984) Embedded-atom method—derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29(12):6443–6453. https://doi.org/10.1103/Physrevb.29.6443

    Article  Google Scholar 

  81. Salehinia I, Shao S, Wang J, Zbib HM (2014) Plastic deformation of metal/ceramic nanolayered composites. Jom-Us 66(10):2078–2085. https://doi.org/10.1007/s11837-014-1132-7

    Article  Google Scholar 

  82. Salehinia I, Wang J, Bahr DF, Zbib HM (2014) Molecular dynamics simulations of plastic deformation in Nb/NbC multilayers. Int J Plast 59:119–132. https://doi.org/10.1016/J.Ijplas.2014.03.010

    Article  Google Scholar 

  83. Salehinia I, Shao S, Wang J, Zbib HM (2015) Interface structure and the inception of plasticity in Nb/NbC nanolayered composites. Acta Mater 86:331–340

    Article  Google Scholar 

  84. Damadam M, Shao S, Salehinia I, Ayoub G, Zbib HM (2017) Molecular dynamics simulations of mechanical behavior in nanoscale ceramic-metallic multilayer composites. Mater Res Lett 5(5):306–313. https://doi.org/10.1080/21663831.2016.1275864

    Article  Google Scholar 

  85. Yang W, Ayoub G, Salehinia I, Mansoor B, Zbib H (2017) Deformation mechanisms in Ti/TiN multilayer under compressive loading. Acta Mater 122:99–108. https://doi.org/10.1016/j.actamat.2016.09.039

    Article  Google Scholar 

  86. Huang SX, Wang J, Zhou CZ (2015) Effect of plastic incompatibility on the strain hardening behavior of Al–TiN nanolayered composites. Mat Sci Eng A—Struct 636:430–433. https://doi.org/10.1016/j.msea.2015.04.013

    Article  Google Scholar 

  87. Yadav SK, Liu XY, Wang J, Ramprasad R, Misra A, Hoagland RG (2013) First-principles density functional theory study of generalized stacking faults in TiN and MgO. Philos Mag 94(5):464–475. https://doi.org/10.1080/14786435.2013.856525

    Article  Google Scholar 

  88. Yu H, Bahadori M, Thompson GB, Weinberger CR (2017) Understanding dislocation slip in stoichiometric rocksalt transition metal carbides and nitrides. J Mater Sci 52(11):6235–6248. https://doi.org/10.1007/s10853-017-0857-4

    Article  Google Scholar 

  89. Yadav SK, Ramprasad R, Misra A, Liu XY (2014) Core structure and Peierls stress of edge and screw dislocations in TiN: a density functional theory study. Acta Mater 74:268–277

    Article  Google Scholar 

  90. Cai W, Bulatov VV, Chang JP, Li J, Yip S (2001) Anisotropic elastic interactions of a periodic dislocation array. Phys Rev Lett 86(25):5727–5730

    Article  Google Scholar 

  91. Cai W, Bulatov VV, Chang JP, Li J, Yip S (2003) Periodic image effects in dislocation modelling. Philos Mag 83(5):539–567

    Article  Google Scholar 

  92. Romaner L, Ambrosch-Draxl C, Pippan R (2010) Effect of rhenium on the dislocation core structure in tungsten. Phys Rev Lett. https://doi.org/10.1103/Physrevlett.104.195503

    Google Scholar 

  93. Mara NA, Li N, Misra A, Wang J (2016) Interface-driven plasticity in metal-ceramic nanolayered composites: direct validation of multiscale deformation modeling via in situ indentation in TEM. Jom-Us 68(1):143–150

    Article  Google Scholar 

  94. Han SM, Phillips MA, Nix WD (2009) Study of strain softening behavior of Al–Al3Sc multilayers using microcompression testing. Acta Mater 57(15):4473–4490. https://doi.org/10.1016/j.actamat.2009.06.007

    Article  Google Scholar 

  95. Mook WM, Raghavan R, Baldwin JK, Frey D, Michler J, Mara NA, Misra A (2013) Indentation fracture response of Al–TiN nanolaminates. Mater Res Lett 1(2):102–108

    Article  Google Scholar 

  96. Pathak S, Li N, Maeder X, Hoagland RG, Baldwin JK, Michler J, Misra A, Wang J, Mara NA (2015) On the origins of hardness of Cu–TiN nanolayered composites. Scr Mater 109:48–51. https://doi.org/10.1016/j.scriptamat.2015.07.015

    Article  Google Scholar 

  97. Liu LM, Wang SQ, Ye HQ (2005) First-principles study of the effect of hydrogen on the metal-ceramic interface. J Phys Condens Matter 17(35):5335–5348. https://doi.org/10.1088/0953-8984/17/35/002

    Article  Google Scholar 

  98. Zhu H, Tang C, Ramprasad R (2010) Phase equilibria at Si–HfO2 and Pt–HfO2 interfaces from first principles thermodynamics. Phys Rev B. https://doi.org/10.1103/Physrevb.82.235413

    Google Scholar 

  99. Touloukian YS, Kirby RK, Taylor RE, Desai PD (1975) Thermal expansion metallic elements and alloys. IFI/Plenum, New York

    Book  Google Scholar 

  100. Schonberg N (1954) An X-ray study of the tantalum–nitrogen system. Acta Chem Scand 8(2):199–203

    Article  Google Scholar 

  101. Liu ZQ, Wang WJ, Wang TM, Chao S, Zheng SK (1998) Thermal stability of copper nitride films prepared by rf magnetron sputtering. Thin Solid Films 325(1–2):55–59. https://doi.org/10.1016/S0040-6090(98)00448-9

    Article  Google Scholar 

  102. Maruyama T, Morishita T (1996) Copper nitride and tin nitride thin films for write-once optical recording media. Appl Phys Lett 69(7):890–891. https://doi.org/10.1063/1.117978

    Article  Google Scholar 

  103. Kittle C (1996) Introduction to solid state physics. Wiley, New York

    Google Scholar 

  104. Abe K, Harada Y, Onoda H (1997) Cu crystallographic texture control in Cu/refractory-metal layered structure as interconnects. Appl Phys Lett 71(19):2782–2784. https://doi.org/10.1063/1.120132

    Article  Google Scholar 

  105. Damadam M, Shao S, Salehinia I, Mastorakos I, Ayoub G, Zbib HM (2017) Strength and plastic deformation behavior of nanolaminate composites with pre-existing dislocations. Comput Mater Sci 138:42–48. https://doi.org/10.1016/j.commatsci.2017.06.016

    Article  Google Scholar 

  106. Liang T, Ashton M, Choudhary K, Zhang DF, Fonseca AF, Revard BC, Hennig RG, Phillpot SR, Sinnott SB (2016) Properties of Ti/TiC interfaces from molecular dynamics simulations. J Phys Chem C 120(23):12530–12538

    Article  Google Scholar 

  107. Wang J, Li N, Anderoglu O, Zhang X, Misra A, Huang J, Hirth J (2010) Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater 58(6):2262–2270

    Article  Google Scholar 

  108. Moya JS, Lopez-Esteban S, Pecharroman C (2007) The challenge of ceramic/metal microcomposites and nanocomposites. Prog Mater Sci 52(7):1017–1090

    Article  Google Scholar 

  109. Ernst F (1995) Metal-oxide interfaces. Mater Sci Eng R: Rep 14(3):97–156

    Article  Google Scholar 

  110. Botu V, Ramprasad R (2015) Adaptive machine learning framework to accelerate ab initio molecular dynamics. Int J Quantum Chem 115(16):1074–1083. https://doi.org/10.1002/qua.24836

    Article  Google Scholar 

  111. Perez D, Uberuaga BP, Voter AF (2015) The parallel replica dynamics method—coming of age. Comput Mater Sci 100:90–103. https://doi.org/10.1016/j.commatsci.2014.12.011

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. The authors acknowledge collaborations with A. Misra, R.G. Hoagland, J.P. Hirth, J. Wang, N. Mara, D. Bhattacharyya, W.M. Mook, S.K. Yadav, S. Shao, Y. Chen. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US Department of Energy Office of Science. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under Contract No. DE-AC52-06NA25396.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nan Li or Xiang-Yang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Liu, XY. Review: mechanical behavior of metal/ceramic interfaces in nanolayered composites—experiments and modeling. J Mater Sci 53, 5562–5583 (2018). https://doi.org/10.1007/s10853-017-1767-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1767-1

Keywords

Navigation