Skip to main content
Log in

Deformation response of grain boundary networks at high temperature

  • Interface Behavior
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The deformation response of random grain boundary networks as a function of temperature and strain rate is explored using molecular dynamics atomistic simulations and an embedded atom method interatomic potential. We find that deformation at higher temperatures promotes both dislocation emission and grain boundary accommodation processes. The results allow estimating the activation energies and volumes for the deformation process. We find activation energy values for the deformation process similar to those for grain boundary diffusion and activation volumes consistent with an atomic shuffling mechanism. Our results suggest a picture of the deformation process as governed by the combination of the applied stress and thermally activated processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Arzt E (1998) Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater 46:5611–5626

    Article  Google Scholar 

  2. Ma E (2006) Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys. JOM 58:49–53

    Article  Google Scholar 

  3. Mara NA, Bhattacharyya D, Hoagland RG, Misra A (2008) Tensile behavior of 40 nm Cu/Nb nanoscale multilayers. Scr Mater 58:874–877

    Article  Google Scholar 

  4. Beyerlein IJ, Mara NA, Bhattacharyya D, Alexander DJ, Necker CT (2011) Texture evolution via combined slip and deformation twinning in rolled silver–copper cast eutectic nanocomposite. Int J Plast 27:121–146

    Article  Google Scholar 

  5. Sangid MD, Ezaz T, Sehitoglu H, Robertson IM (2011) Energy of slip transmission and nucleation at grain boundaries. Acta Mater 59:283–296

    Article  Google Scholar 

  6. Van Swygenhoven H, Farkas D, Caro A (2000) Grain-boundary structures in polycrystalline metals at the nanoscale. Phys Rev B 62:831–838

    Article  Google Scholar 

  7. Tschopp MA, McDowell DL (2007) Asymmetric tilt grain boundary structure and energy in copper and aluminium. Philos Mag 87:3871–3892

    Article  Google Scholar 

  8. Chen MW, Ma E, Hemker KJ, Sheng HW, Wang YM, Cheng XM (2003) Deformation twinning in nanocrystalline aluminum. Science 300:1275–1277

    Article  Google Scholar 

  9. Farkas D, Patrick L (2009) Tensile deformation of fcc Ni as described by an EAM potential. Philos Mag 89:3435–3450

    Article  Google Scholar 

  10. Jeon JB, Lee B-J, Chang YW (2011) Molecular dynamics simulation study of the effect of grain size on the deformation behavior of nanocrystalline body-centered cubic iron. Scr Mater 64:494–497

    Article  Google Scholar 

  11. McMurtrey MD, Was GS, Patrick L, Farkas D (2011) Relationship between localized strain and irradiation assisted stress corrosion cracking in an austenitic alloy. Mater Sci Eng Struct Mater Prop Microstruct Process 528:3730–3740

    Article  Google Scholar 

  12. Stukowski A, Albe K, Farkas D (2010) Nanotwinned fcc metals: strengthening versus softening mechanisms. Phys Rev B 82:224103

    Article  Google Scholar 

  13. Vo NQ, Averback RS, Bellon P, Caro A (2009) Yield strength in nanocrystalline Cu during high strain rate deformation. Scr Mater 61:76–79

    Article  Google Scholar 

  14. Asaro RJ, Suresh S (2005) Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater 53:3369–3382

    Article  Google Scholar 

  15. Lee TC, Robertson IM, Birnbaum HK (1989) Prediction of slip transfer mechanisms across grain boundaries. Scr Metall 23:799–803

    Article  Google Scholar 

  16. Lee TC, Robertson IM, Birnbaum HK (1990) TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals. Philos Mag A 62:131–153

    Article  Google Scholar 

  17. Lee TC, Robertson IM, Birnbaum HK (1990) In situ transmission electron microscope deformation study of the slip transfer mechanisms in metals. Metall Trans A (Phys Metall Mater Sci) 21A:2437–2447

    Article  Google Scholar 

  18. Clark WAT, Wagoner RH, Shen ZY, Lee TC, Robertson IM, Birnbaum HK (1992) On the criteria for slip transmission across interfaces in polycrystals. Scr Metall Mater. 26:203–206

    Article  Google Scholar 

  19. Suri S, Viswanathan GB, Neeraj T, Hou DH, Mills MJ (1999) Room temperature deformation and mechanisms of slip transmission in oriented single-colony crystals of an α/β titanium alloy. Acta Mater 47:1019–1034

    Article  Google Scholar 

  20. Dingley DJ, Pond RC (1979) Interaction of crystal dislocations with grain-boundaries. Acta Metall 27:667–682

    Article  Google Scholar 

  21. de Koning M, Miller R, Bulatov VV, Abraham FF (2002) Modelling grain-boundary resistance in intergranular dislocation slip transmission. Philos Mag A-Phys Condens Matter Struct Defect Mech Prop 82:2511–2527

    Google Scholar 

  22. Jin ZH, Gumbsch P, Albe K et al (2008) Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals. Acta Mater 56:1126–1135

    Article  Google Scholar 

  23. Kelchner CL, Plimpton SJ, Hamilton JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B 58:11085–11088

    Article  Google Scholar 

  24. Kumar R, Szekely F, Van der Giessen E (2010) Modelling dislocation transmission across tilt grain boundaries in 2D. Comput Mater Sci 49:46–54

    Article  Google Scholar 

  25. Smith L, Farkas D (2013) Non-planar grain boundary structures in fcc metals and their role in nano-scale deformation mechanisms. Philos Mag 94:152–173

    Article  Google Scholar 

  26. Smith L, Farkas D (2014) Non-planar grain boundary structures in fcc metals and their role in nano-scale deformation mechanisms. Philos Mag 94:152–173

    Article  Google Scholar 

  27. Smith L, Zimmerman JA, Hale LM, Farkas D (2014) Molecular dynamics study of deformation and fracture in a tantalum nano-crystalline thin film. Model Simul Mater Sci Eng 22:045010. https://doi.org/10.1088/0965-0393/22/4/045010

    Article  Google Scholar 

  28. Tucker GJ, Tschopp MA, McDowell DL (2010) Evolution of structure and free volume in symmetric tilt grain boundaries during dislocation nucleation. Acta Mater 58:6464–6473

    Article  Google Scholar 

  29. Du JP, Wang YJ, Lo YC, Wan L, Ogata S (2016) Mechanism transition and strong temperature dependence of dislocation nucleation from grain boundaries: an accelerated molecular dynamics study. Phys Rev B 94:104110

    Article  Google Scholar 

  30. Jiao SY, Kulkarni Y (2015) Molecular dynamics study of creep mechanisms in nanotwinned metals. Comput Mater Sci 110:254–260

    Article  Google Scholar 

  31. Nie K, Wu WP, Zhang XL, Yang SM (2017) Molecular dynamics study on the grain size, temperature, and stress dependence of creep behavior in nanocrystalline nickel. J Mater Sci 52:2180–2191 https://doi.org/10.1007/s10853-016-0506-3

    Article  Google Scholar 

  32. Van Swygenhoven H, Derlet PM, Hasnaoui A (2002) Atomic mechanism for dislocation emission from nanosized grain boundaries. Phys Rev B 66:024101. https://doi.org/10.1103/PhysRevB.66.024101

    Article  Google Scholar 

  33. Spearot DE, McDowell DL (2009) Atomistic modeling of grain boundaries and dislocation processes in metallic polycrystalline materials. J Eng Mater Technol-Trans ASME 131:041204

    Article  Google Scholar 

  34. Farkas D, Curtin WA (2005) Plastic deformation mechanisms in nanocrystalline columnar grain structures. Mater Sci Eng A-Struct Mater Prop Microstruct Process 412:316–322

    Article  Google Scholar 

  35. Smith L, Farkas D (2013) Non-planar grain boundary structures in fcc metals and their role in nano-scale deformation mechanisms. Philos Mag 94:152–173

    Article  Google Scholar 

  36. Van Swygenhoven H, Spaczer M, Caro A, Farkas D (1999) Competing plastic deformation mechanisms in nanophase metals. Phys Rev B 60:22–25

    Article  Google Scholar 

  37. Mishin Y, Farkas D, Mehl MJ, Papaconstantopoulos DA (1999) Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys Rev B 59:3393–3407

    Article  Google Scholar 

  38. Wolf D, Yip S (1992) Materials interfaces: atomic-level structure and properties. Springer, Berlin

    Google Scholar 

  39. Plimpton S (1995) Fast parallel algorithms for short-range molecular-dynamics. J Comput Phys 117:1–19

    Article  Google Scholar 

  40. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Model Simul Mater Sci Eng 18:015012

    Article  Google Scholar 

  41. Holm EA, Olmsted DL, Foiles SM (2010) Comparing grain boundary energies in face-centered cubic metals: Al, Au, Cu and Ni. Scr Mater 63:905–908

    Article  Google Scholar 

  42. Rohrer GS, Holm EA, Rollett AD, Foiles SM, Li J, Olmsted DL (2010) Comparing calculated and measured grain boundary energies in nickel. Acta Mater 58:5063–5069

    Article  Google Scholar 

  43. Olmsted DL, Foiles SM, Holm EA (2009) Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Mater 57:3694–3703

    Article  Google Scholar 

  44. Olmsted DL, Holm EA, Foiles SM (2009) Survey of computed grain boundary properties in face-centered cubic metals-II: grain boundary mobility. Acta Mater 57:3704–3713

    Article  Google Scholar 

  45. Luo J, Li MQ, Yu WX, Li H (2010) The variation of strain rate sensitivity exponent and strain hardening exponent in isothermal compression of Ti-6Al-4V alloy. Mater Des 31:741–748

    Article  Google Scholar 

  46. Picu RC, Vincze G, Ozturk F, Gracio JJ, Barlat F, Maniatty AM (2005) Strain rate sensitivity of the commercial aluminum alloy AA5182-O. Mater Sci Eng A-Struct Mater Prop Microstruct Process 390:334–343

    Article  Google Scholar 

  47. Romhanji E, Dudukovska A, Glisic D (2002) The effect of temperature on strain-rate sensitivity in high strength Al–Mg alloy sheet. J Mater Process Technol 125:193–198

    Article  Google Scholar 

  48. Deng C, Sansoz F (2010) Effects of twin and surface facet on strain-rate sensitivity of gold nanowires at different temperatures. Phys Rev B 81:7. https://doi.org/10.1103/PhysRevB.81.155430

    Google Scholar 

  49. Monk J, Farkas D (2007) Strain-induced grain growth and rotation in nickel nanowires. Phys Rev B 75:5. https://doi.org/10.1103/PhysRevB.75.045414

    Article  Google Scholar 

  50. Kocks UF, Argon AS, Ashby MF (1975) Thermodynamics and kinetics of slip. Prog Mater Sci 19:1–291

    Article  Google Scholar 

  51. Bokstein BS, Brose HD, Trusov LI, Khvostantseva TP (1995) Diffusion in nanocrystalline nickel. Nanostruct Mater 6:873–876

    Article  Google Scholar 

  52. Prokoshkina D, Esin VA, Wilde G, Divinski SV (2013) Grain boundary width, energy and self-diffusion in nickel: effect of material purity. Acta Mater 61:5188–5197

    Article  Google Scholar 

  53. Frolov T, Olmsted DL, Asta M, Mishin Y (2013) Structural phase transformations in metallic grain boundaries. Nat Commun 4:1899. https://doi.org/10.1038/ncomms2919

    Article  Google Scholar 

  54. Karma A, Trautt ZT, Mishin Y (2012) Relationship between equilibrium fluctuations and shear-coupled motion of grain boundaries. Phys Rev Lett 109:095501

    Article  Google Scholar 

  55. Frolov T, Asta M, Mishin Y (2016) Phase transformations at interfaces: observations from atomistic modeling. Curr Opin Solid State Mater Sci 20:308–315

    Article  Google Scholar 

  56. Fensin SJ, Asta M, Hoagland RG (2012) Temperature dependence of the structure and shear response of a Sigma 11 asymmetric tilt grain boundary in copper from molecular-dynamics. Philos Mag 92:4320–4333

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Energy, Office of Basic Energy Sciences, under Grant DE-FG02-08ER46525. Critical discussions with Ian Robertson, (University of Wisconsin) and Josh Kacher (Georgia Tech) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Farkas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, L., Farkas, D. Deformation response of grain boundary networks at high temperature. J Mater Sci 53, 5696–5705 (2018). https://doi.org/10.1007/s10853-017-1760-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1760-8

Keywords

Navigation