Journal of Materials Science

, Volume 53, Issue 8, pp 5696–5705 | Cite as

Deformation response of grain boundary networks at high temperature

Interface Behavior


The deformation response of random grain boundary networks as a function of temperature and strain rate is explored using molecular dynamics atomistic simulations and an embedded atom method interatomic potential. We find that deformation at higher temperatures promotes both dislocation emission and grain boundary accommodation processes. The results allow estimating the activation energies and volumes for the deformation process. We find activation energy values for the deformation process similar to those for grain boundary diffusion and activation volumes consistent with an atomic shuffling mechanism. Our results suggest a picture of the deformation process as governed by the combination of the applied stress and thermally activated processes.



This work was supported by the Department of Energy, Office of Basic Energy Sciences, under Grant DE-FG02-08ER46525. Critical discussions with Ian Robertson, (University of Wisconsin) and Josh Kacher (Georgia Tech) are gratefully acknowledged.


  1. 1.
    Arzt E (1998) Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater 46:5611–5626CrossRefGoogle Scholar
  2. 2.
    Ma E (2006) Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys. JOM 58:49–53CrossRefGoogle Scholar
  3. 3.
    Mara NA, Bhattacharyya D, Hoagland RG, Misra A (2008) Tensile behavior of 40 nm Cu/Nb nanoscale multilayers. Scr Mater 58:874–877CrossRefGoogle Scholar
  4. 4.
    Beyerlein IJ, Mara NA, Bhattacharyya D, Alexander DJ, Necker CT (2011) Texture evolution via combined slip and deformation twinning in rolled silver–copper cast eutectic nanocomposite. Int J Plast 27:121–146CrossRefGoogle Scholar
  5. 5.
    Sangid MD, Ezaz T, Sehitoglu H, Robertson IM (2011) Energy of slip transmission and nucleation at grain boundaries. Acta Mater 59:283–296CrossRefGoogle Scholar
  6. 6.
    Van Swygenhoven H, Farkas D, Caro A (2000) Grain-boundary structures in polycrystalline metals at the nanoscale. Phys Rev B 62:831–838CrossRefGoogle Scholar
  7. 7.
    Tschopp MA, McDowell DL (2007) Asymmetric tilt grain boundary structure and energy in copper and aluminium. Philos Mag 87:3871–3892CrossRefGoogle Scholar
  8. 8.
    Chen MW, Ma E, Hemker KJ, Sheng HW, Wang YM, Cheng XM (2003) Deformation twinning in nanocrystalline aluminum. Science 300:1275–1277CrossRefGoogle Scholar
  9. 9.
    Farkas D, Patrick L (2009) Tensile deformation of fcc Ni as described by an EAM potential. Philos Mag 89:3435–3450CrossRefGoogle Scholar
  10. 10.
    Jeon JB, Lee B-J, Chang YW (2011) Molecular dynamics simulation study of the effect of grain size on the deformation behavior of nanocrystalline body-centered cubic iron. Scr Mater 64:494–497CrossRefGoogle Scholar
  11. 11.
    McMurtrey MD, Was GS, Patrick L, Farkas D (2011) Relationship between localized strain and irradiation assisted stress corrosion cracking in an austenitic alloy. Mater Sci Eng Struct Mater Prop Microstruct Process 528:3730–3740CrossRefGoogle Scholar
  12. 12.
    Stukowski A, Albe K, Farkas D (2010) Nanotwinned fcc metals: strengthening versus softening mechanisms. Phys Rev B 82:224103CrossRefGoogle Scholar
  13. 13.
    Vo NQ, Averback RS, Bellon P, Caro A (2009) Yield strength in nanocrystalline Cu during high strain rate deformation. Scr Mater 61:76–79CrossRefGoogle Scholar
  14. 14.
    Asaro RJ, Suresh S (2005) Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater 53:3369–3382CrossRefGoogle Scholar
  15. 15.
    Lee TC, Robertson IM, Birnbaum HK (1989) Prediction of slip transfer mechanisms across grain boundaries. Scr Metall 23:799–803CrossRefGoogle Scholar
  16. 16.
    Lee TC, Robertson IM, Birnbaum HK (1990) TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals. Philos Mag A 62:131–153CrossRefGoogle Scholar
  17. 17.
    Lee TC, Robertson IM, Birnbaum HK (1990) In situ transmission electron microscope deformation study of the slip transfer mechanisms in metals. Metall Trans A (Phys Metall Mater Sci) 21A:2437–2447CrossRefGoogle Scholar
  18. 18.
    Clark WAT, Wagoner RH, Shen ZY, Lee TC, Robertson IM, Birnbaum HK (1992) On the criteria for slip transmission across interfaces in polycrystals. Scr Metall Mater. 26:203–206CrossRefGoogle Scholar
  19. 19.
    Suri S, Viswanathan GB, Neeraj T, Hou DH, Mills MJ (1999) Room temperature deformation and mechanisms of slip transmission in oriented single-colony crystals of an α/β titanium alloy. Acta Mater 47:1019–1034CrossRefGoogle Scholar
  20. 20.
    Dingley DJ, Pond RC (1979) Interaction of crystal dislocations with grain-boundaries. Acta Metall 27:667–682CrossRefGoogle Scholar
  21. 21.
    de Koning M, Miller R, Bulatov VV, Abraham FF (2002) Modelling grain-boundary resistance in intergranular dislocation slip transmission. Philos Mag A-Phys Condens Matter Struct Defect Mech Prop 82:2511–2527Google Scholar
  22. 22.
    Jin ZH, Gumbsch P, Albe K et al (2008) Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals. Acta Mater 56:1126–1135CrossRefGoogle Scholar
  23. 23.
    Kelchner CL, Plimpton SJ, Hamilton JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B 58:11085–11088CrossRefGoogle Scholar
  24. 24.
    Kumar R, Szekely F, Van der Giessen E (2010) Modelling dislocation transmission across tilt grain boundaries in 2D. Comput Mater Sci 49:46–54CrossRefGoogle Scholar
  25. 25.
    Smith L, Farkas D (2013) Non-planar grain boundary structures in fcc metals and their role in nano-scale deformation mechanisms. Philos Mag 94:152–173CrossRefGoogle Scholar
  26. 26.
    Smith L, Farkas D (2014) Non-planar grain boundary structures in fcc metals and their role in nano-scale deformation mechanisms. Philos Mag 94:152–173CrossRefGoogle Scholar
  27. 27.
    Smith L, Zimmerman JA, Hale LM, Farkas D (2014) Molecular dynamics study of deformation and fracture in a tantalum nano-crystalline thin film. Model Simul Mater Sci Eng 22:045010. CrossRefGoogle Scholar
  28. 28.
    Tucker GJ, Tschopp MA, McDowell DL (2010) Evolution of structure and free volume in symmetric tilt grain boundaries during dislocation nucleation. Acta Mater 58:6464–6473CrossRefGoogle Scholar
  29. 29.
    Du JP, Wang YJ, Lo YC, Wan L, Ogata S (2016) Mechanism transition and strong temperature dependence of dislocation nucleation from grain boundaries: an accelerated molecular dynamics study. Phys Rev B 94:104110CrossRefGoogle Scholar
  30. 30.
    Jiao SY, Kulkarni Y (2015) Molecular dynamics study of creep mechanisms in nanotwinned metals. Comput Mater Sci 110:254–260CrossRefGoogle Scholar
  31. 31.
    Nie K, Wu WP, Zhang XL, Yang SM (2017) Molecular dynamics study on the grain size, temperature, and stress dependence of creep behavior in nanocrystalline nickel. J Mater Sci 52:2180–2191 CrossRefGoogle Scholar
  32. 32.
    Van Swygenhoven H, Derlet PM, Hasnaoui A (2002) Atomic mechanism for dislocation emission from nanosized grain boundaries. Phys Rev B 66:024101. CrossRefGoogle Scholar
  33. 33.
    Spearot DE, McDowell DL (2009) Atomistic modeling of grain boundaries and dislocation processes in metallic polycrystalline materials. J Eng Mater Technol-Trans ASME 131:041204CrossRefGoogle Scholar
  34. 34.
    Farkas D, Curtin WA (2005) Plastic deformation mechanisms in nanocrystalline columnar grain structures. Mater Sci Eng A-Struct Mater Prop Microstruct Process 412:316–322CrossRefGoogle Scholar
  35. 35.
    Smith L, Farkas D (2013) Non-planar grain boundary structures in fcc metals and their role in nano-scale deformation mechanisms. Philos Mag 94:152–173CrossRefGoogle Scholar
  36. 36.
    Van Swygenhoven H, Spaczer M, Caro A, Farkas D (1999) Competing plastic deformation mechanisms in nanophase metals. Phys Rev B 60:22–25CrossRefGoogle Scholar
  37. 37.
    Mishin Y, Farkas D, Mehl MJ, Papaconstantopoulos DA (1999) Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys Rev B 59:3393–3407CrossRefGoogle Scholar
  38. 38.
    Wolf D, Yip S (1992) Materials interfaces: atomic-level structure and properties. Springer, BerlinGoogle Scholar
  39. 39.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular-dynamics. J Comput Phys 117:1–19CrossRefGoogle Scholar
  40. 40.
    Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Model Simul Mater Sci Eng 18:015012CrossRefGoogle Scholar
  41. 41.
    Holm EA, Olmsted DL, Foiles SM (2010) Comparing grain boundary energies in face-centered cubic metals: Al, Au, Cu and Ni. Scr Mater 63:905–908CrossRefGoogle Scholar
  42. 42.
    Rohrer GS, Holm EA, Rollett AD, Foiles SM, Li J, Olmsted DL (2010) Comparing calculated and measured grain boundary energies in nickel. Acta Mater 58:5063–5069CrossRefGoogle Scholar
  43. 43.
    Olmsted DL, Foiles SM, Holm EA (2009) Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Mater 57:3694–3703CrossRefGoogle Scholar
  44. 44.
    Olmsted DL, Holm EA, Foiles SM (2009) Survey of computed grain boundary properties in face-centered cubic metals-II: grain boundary mobility. Acta Mater 57:3704–3713CrossRefGoogle Scholar
  45. 45.
    Luo J, Li MQ, Yu WX, Li H (2010) The variation of strain rate sensitivity exponent and strain hardening exponent in isothermal compression of Ti-6Al-4V alloy. Mater Des 31:741–748CrossRefGoogle Scholar
  46. 46.
    Picu RC, Vincze G, Ozturk F, Gracio JJ, Barlat F, Maniatty AM (2005) Strain rate sensitivity of the commercial aluminum alloy AA5182-O. Mater Sci Eng A-Struct Mater Prop Microstruct Process 390:334–343CrossRefGoogle Scholar
  47. 47.
    Romhanji E, Dudukovska A, Glisic D (2002) The effect of temperature on strain-rate sensitivity in high strength Al–Mg alloy sheet. J Mater Process Technol 125:193–198CrossRefGoogle Scholar
  48. 48.
    Deng C, Sansoz F (2010) Effects of twin and surface facet on strain-rate sensitivity of gold nanowires at different temperatures. Phys Rev B 81:7. Google Scholar
  49. 49.
    Monk J, Farkas D (2007) Strain-induced grain growth and rotation in nickel nanowires. Phys Rev B 75:5. CrossRefGoogle Scholar
  50. 50.
    Kocks UF, Argon AS, Ashby MF (1975) Thermodynamics and kinetics of slip. Prog Mater Sci 19:1–291CrossRefGoogle Scholar
  51. 51.
    Bokstein BS, Brose HD, Trusov LI, Khvostantseva TP (1995) Diffusion in nanocrystalline nickel. Nanostruct Mater 6:873–876CrossRefGoogle Scholar
  52. 52.
    Prokoshkina D, Esin VA, Wilde G, Divinski SV (2013) Grain boundary width, energy and self-diffusion in nickel: effect of material purity. Acta Mater 61:5188–5197CrossRefGoogle Scholar
  53. 53.
    Frolov T, Olmsted DL, Asta M, Mishin Y (2013) Structural phase transformations in metallic grain boundaries. Nat Commun 4:1899. CrossRefGoogle Scholar
  54. 54.
    Karma A, Trautt ZT, Mishin Y (2012) Relationship between equilibrium fluctuations and shear-coupled motion of grain boundaries. Phys Rev Lett 109:095501CrossRefGoogle Scholar
  55. 55.
    Frolov T, Asta M, Mishin Y (2016) Phase transformations at interfaces: observations from atomistic modeling. Curr Opin Solid State Mater Sci 20:308–315CrossRefGoogle Scholar
  56. 56.
    Fensin SJ, Asta M, Hoagland RG (2012) Temperature dependence of the structure and shear response of a Sigma 11 asymmetric tilt grain boundary in copper from molecular-dynamics. Philos Mag 92:4320–4333CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations