Advertisement

Journal of Materials Science

, Volume 53, Issue 8, pp 5733–5744 | Cite as

Atomistic modeling of Mg/Nb interfaces: shear strength and interaction with lattice glide dislocations

  • S. K. Yadav
  • S. Shao
  • Y. Chen
  • J. Wang
  • X.-Y. Liu
Interface Behavior

Abstract

Using a newly developed embedded-atom-method potential for Mg–Nb, the semi-coherent Mg/Nb interface with the Kurdjumov–Sachs orientation relationship is studied. Atomistic simulations have been carried out to understand the shear strength of the interface, as well as the interaction between lattice glide dislocations and the interface. The interface shear mechanisms are dependent on the shear loading directions, through either interface sliding between Mg and Nb atomic layers or nucleation and gliding of Shockley partial dislocations in between the first two atomic planes in Mg at the interface. The shear strength for the Mg/Nb interface is found to be generally high, in the range of 0.9–1.3 GPa depending on the shear direction. As a consequence, the extents of dislocation core spread into the interface are considerably small, especially when compared to the case of other “weak” interfaces such as the Cu/Nb interface.

Notes

Acknowledgements

This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. The authors acknowledge helpful discussions with Richard G. Hoagland at LANL.

References

  1. 1.
    Pollock TM (2010) Weight loss with magnesium alloys. Science 328(5981):986–987. doi: 10.1126/science.1182848 CrossRefGoogle Scholar
  2. 2.
    Ardeljan M, Beyerlein IJ, Knezevic M (2014) A dislocation density based crystal plasticity finite element model: application to a two-phase polycrystalline HCP/BCC composites. J Mech Phys Solids 66:16–31. doi: 10.1016/j.jmps.2014.01.006 CrossRefGoogle Scholar
  3. 3.
    Ardeljan M, Knezevic M, Nizolek T, Beyerlein IJ, Mara NA, Pollock TM (2015) A study of microstructure-driven strain localizations in two-phase polycrystalline HCP/BCC composites using a multi-scale model. Int J Plast 74:35–57. doi: 10.1016/j.ijplas.2015.06.003 CrossRefGoogle Scholar
  4. 4.
    Knezevic M, Nizolek T, Ardeljan M, Beyerlein IJ, Mara NA, Pollock TM (2014) Texture evolution in two-phase Zr/Nb lamellar composites during accumulative roll bonding. Int J Plast 57:16–28. doi: 10.1016/j.ijplas.2014.01.008 CrossRefGoogle Scholar
  5. 5.
    Junkaew A, Ham B, Zhang X, Talapatra A, Arróyave R (2013) Stabilization of bcc Mg in thin films at ambient pressure: experimental evidence and ab initio calculations. Mater Res Lett 1(3):161–167CrossRefGoogle Scholar
  6. 6.
    Ham B, Zhang X (2011) High strength Mg/Nb nanolayer composites. Mater Sci Eng A Struct 528(4–5):2028–2033. doi: 10.1016/j.msea.2010.10.101 CrossRefGoogle Scholar
  7. 7.
    Kumar A, Beyerlein IJ, Wang J (2014) First-principles study of the structure of Mg/Nb multilayers. Appl Phys Lett 105(7):071602CrossRefGoogle Scholar
  8. 8.
    Pathak S, Velisavljevic N, Baldwin JK, Jain M, Zheng S, Mara NA, Beyerlein IJ (2017) Strong, ductile, and thermally stable bcc-Mg Nanolaminates. Sci Rep Uk 7(1):8264. doi: 10.1038/s41598-017-08302-5 CrossRefGoogle Scholar
  9. 9.
    Chen Y UnpublishedGoogle Scholar
  10. 10.
    Wang J, Hoagland RG, Hirth JP, Misra A (2008) Atomistic modeling of the interaction of glide dislocations with “weak” interfaces. Acta Mater 56(19):5685–5693. doi: 10.1016/j.actamat.2008.07.041 CrossRefGoogle Scholar
  11. 11.
    Daw MS, Baskes MI (1984) Embedded-atom method—derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29(12):6443–6453. doi: 10.1103/Physrevb.29.6443 CrossRefGoogle Scholar
  12. 12.
    Liu XY, Adams JB, Ercolessi F, Moriarty JA (1996) EAM potential for magnesium from quantum mechanical forces. Model Simul Mater Sci 4(3):293–303CrossRefGoogle Scholar
  13. 13.
    Ackland GJ, Thetford R (1987) An improved N-body semiempirical model for body-centered cubic transition-metals. Philos Mag A 56(1):15–30CrossRefGoogle Scholar
  14. 14.
    Zhang RF, Wang J, Beyerlein IJ, Germann TC (2011) Twinning in bcc metals under shock loading: a challenge to empirical potentials. Philos Mag Lett 91(12):731–740. doi: 10.1080/09500839.2011.615348 CrossRefGoogle Scholar
  15. 15.
    Zhang RF, Germann TC, Liu XY, Wang J, Beyerlein IJ (2014) Layer size effect on the shock compression behavior of fcc–bcc nanolaminates. Acta Mater 79:74–83. doi: 10.1016/j.actamat.2014.07.016 CrossRefGoogle Scholar
  16. 16.
    Zhang L, Martinez E, Caro A, Liu X-Y, Demkowicz MJ (2013) Liquid-phase thermodynamics and structures in the Cu–Nb binary system. Model Simul Mater Sci 21(2):025005CrossRefGoogle Scholar
  17. 17.
    Demkowicz MJ, Hoagland RG (2009) Simulations of Collision Cascades in Cu–Nb Layered Composites Using an Eam Interatomic Potential. Int J Appl Mech 1(3):421–442CrossRefGoogle Scholar
  18. 18.
    Liu XY, Hoagland RG, Wang J, Germann TC, Misra A (2010) The influence of dilute heats of mixing on the atomic structures, defect energetics and mechanical properties of fcc–bcc interfaces. Acta Mater 58(13):4549–4557. doi: 10.1016/j.actamat.2010.05.008 CrossRefGoogle Scholar
  19. 19.
    Liu XY, Hoagland RG, Demkowicz MJ, Nastasi M, Misra A (2012) The influence of lattice misfit on the atomic structures and defect energetics of face centered cubic-body centered cubic interfaces. J Eng Mater T Asme 134(2):021012CrossRefGoogle Scholar
  20. 20.
    Wei QM, Liu XY, Misra A (2011) Observation of continuous and reversible bcc-fcc phase transformation in Ag/V multilayers. Appl Phys Lett 98(11):111907CrossRefGoogle Scholar
  21. 21.
    Chen Y, Shao S, Liu XY, Yadav SK, Li N, Mara N, Wang J (2017) Misfit dislocation patterns of Mg–Nb interfaces. Acta Mater 126:552–563. doi: 10.1016/j.actamat.2016.12.041 CrossRefGoogle Scholar
  22. 22.
    Wang J, Hoagland R, Liu X, Misra A (2011) The influence of interface shear strength on the glide dislocation–interface interactions. Acta Mater 59(8):3164–3173CrossRefGoogle Scholar
  23. 23.
    Barnett DM, Lothe J (1974) An image force theorem for dislocations in anisotropic bicrystals. J Phys F Met Phys 4(10):1618CrossRefGoogle Scholar
  24. 24.
    Wang J, Hoagland R, Hirth J, Misra A (2008) Atomistic simulations of the shear strength and sliding mechanisms of copper–niobium interfaces. Acta Mater 56(13):3109–3119CrossRefGoogle Scholar
  25. 25.
    Pilania G, Thijsse BJ, Hoagland RG, Lazic I, Valone SM, Liu XY (2014) Revisiting the Al/Al2O3 interface: coherent interfaces and misfit accommodation. Sci Rep Uk 4:4485CrossRefGoogle Scholar
  26. 26.
    Hirth J, Pond R, Hoagland R, Liu X-Y, Wang J (2013) Interface defects, reference spaces and the Frank-Bilby equation. Prog Mater Sci 58(5):749–823CrossRefGoogle Scholar
  27. 27.
    Li J (2003) AtomEye: an efficient atomistic configuration viewer. Model Simul Mater Sci 11(2):173–177CrossRefGoogle Scholar
  28. 28.
    Fan HD, El-Awady JA (2015) Molecular dynamics simulations of orientation effects during tension, compression, and bending deformations of magnesium nanocrystals. J Appl Mech T Asme 82(10):101006CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology (IIT) MadrasChennaiIndia
  2. 2.Materials Science and Technology Division, MST-8Los Alamos National LaboratoryLos AlamosUSA
  3. 3.Department of Mechanical and Industrial EngineeringLouisiana State UniversityBaton RougeUSA
  4. 4.Materials Physics and Applications Division, MPA-CINTLos Alamos National LaboratoryLos AlamosUSA
  5. 5.Department of Mechanical and Materials EngineeringUniversity of Nebraska–LincolnLincolnUSA

Personalised recommendations