Journal of Materials Science

, Volume 53, Issue 8, pp 5879–5890 | Cite as

The role of carbon and tungsten disulphide nanotubes in the fracture of polymer-interlayered ceramic composites: a microscopy study

  • Konstantin Livanov
  • Hans Jelitto
  • Gerold A. Schneider
  • H. Daniel Wagner
Interface Behavior


Multi-walled carbon nanotubes (MWNT) and tungsten disulphide nanotubes (WS2-INT) have been widely used to improve the strength and toughness of composite materials. The mechanisms of such improvements are extensively studied, but it is not often clear what prompts a specific reinforcement mechanism to work. In this work we prepared two similar systems reinforced with different nanofillers (MWNT and WS2-INT). Using in situ optical microscopy and post-fracture electron microscopy, we established that using different nanofillers results in a different type of fracture and a different reinforcement mechanism. When compared to non-reinforced composites both systems showed significant improvements in both strength and fracture toughness.



This research was supported by THE ISRAEL SCIENCE FOUNDATION (Grant No. _727/14), and by the INNI Focal Technology Area program “Inorganic nanotubes (INT): from nanomechanics to improved nanocomposites”. In addition, we acknowledge support from the G. M. J. Schmidt Minerva Centre of Supramolecular Architectures and the generosity of the Harold Perlman family. We thank the group of Prof. Reshef Tenne for providing tungsten disulphide nanotubes. H.D.Wagner is the recipient of the Livio Norzi Professorial Chair in Materials Science.

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest to declare.

Supplementary material

10853_2017_1674_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1078 kb)


  1. 1.
    Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:1624–1652CrossRefGoogle Scholar
  2. 2.
    Tenne R, Rosentsveig R, Zak A (2013) Inorganic nanotubes and fullerene-like nanoparticles: synthesis, mechanical properties, and applications. Phys Status Solidi A 210:2253–2258CrossRefGoogle Scholar
  3. 3.
    Naskar AK, Keum JK, Boeman RG (2016) Polymer matrix nanocomposites for automotive structural components. Nat Nanotech 6:1026–1030CrossRefGoogle Scholar
  4. 4.
    Dzenis Y (2008) Structural nanocomposites. Science 314:419–420CrossRefGoogle Scholar
  5. 5.
    Yu M-F, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640CrossRefGoogle Scholar
  6. 6.
    Kaplan-Ashiri I, Tenne R (2016) On the mechanical properties of WS2 and MoS2 nanotubes and fullerene-like nanoparticles: in situ electron microscopy measurements. JOM 68:151–167CrossRefGoogle Scholar
  7. 7.
    Barber AH, Kaplan-Ashiri I, Cohen SR, Tenne R, Wagner HD (2005) Stochastic strength of nanotubes: an appraisal of available data. Compos Sci Technol 65:2380–2384CrossRefGoogle Scholar
  8. 8.
    Dufresne A, Paillet M, Putaux JL, Canet R, Carmona F, Delhaes P, Cui S (2002) Processing and characterization of carbon nanotube/poly(styrene- co-butyl acrylate) nanocomposites. J Mater Sci 37:3915–3923. doi: 10.1023/A:1019659624567 CrossRefGoogle Scholar
  9. 9.
    Gorga RE, Cohen RE (2004) Toughness enhancements in poly(methyl methacrylate) by addition of oriented multiwall carbon nanotubes. J Polym Sci Part B Polym Phys 42:2690–2702CrossRefGoogle Scholar
  10. 10.
    Zhang W, Ge S, Wang Y, Rafailovich MH, Dhez O, Winesett DA, Ade H, Shafi KVPM, Ulman A, Popovitz-Biro R, Tenne R, Sokolov J (2003) Use of functionalized WS2 nanotubes to produce new polystyrene/polymethylmethacrylate nanocomposites. Polymer 44:2109–2115CrossRefGoogle Scholar
  11. 11.
    Zohar E, Baruch S, Shneider M, Dodiuk H, Kenig S, Tenne R, Wagner HD (2011) The effect of WS2 nanotubes on the properties of epoxy-based nanocomposites. J Adhesion Sci Technol 25:1603–1617CrossRefGoogle Scholar
  12. 12.
    Zhan GD, Kuntz JD, Wan J, Mukherjee AK (2003) Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat Mater 2:38–42CrossRefGoogle Scholar
  13. 13.
    Wang X, Padture NP, Tanaka H (2004) Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites. Nat Mater 3:539–544CrossRefGoogle Scholar
  14. 14.
    Mirjalili V, Ramachandramoorthy R, Hubert P (2014) Enhancement of fracture toughness of carbon fiber laminated composites using multi wall carbon nanotubes. Carbon 79:413–423CrossRefGoogle Scholar
  15. 15.
    Veedu VP, Cao A, Li X, Ma K, Soldano C, Kar S, Ajayan PM, Ghasemi-Nejhad MN (2006) Multifunctional composites using reinforced laminae with carbon- nanotube forests. Nat Mater 5:457–462CrossRefGoogle Scholar
  16. 16.
    Mamedov AA, Kotov NA, Prato M, Guldi DM, Wicksted JP, Hirsch A (2002) Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nat Mater 1:190–194CrossRefGoogle Scholar
  17. 17.
    Greenfeld I, Wagner HD (2015) Nanocomposite toughness, strength and stiffness: role of filler geometry. Nanocomposites 1:3–17CrossRefGoogle Scholar
  18. 18.
    Eitan A, Fisher FT, Andrews R, Brinson LC, Schadler LS (2006) Reinforcement mechanisms in MWCNT-filled polycarbonate. Compos Sci Technol 66:1162–1173CrossRefGoogle Scholar
  19. 19.
    Livanov K, Yang L, Nissenbaum A, Wagner HD (2016) Interphase tuning for stronger and tougher composites. Sci Rep 6:26305CrossRefGoogle Scholar
  20. 20.
    Alhazov D, Zussman E (2012) Study of the energy absorption capabilities of laminated glass using carbon nanotubes. Compos Sci Technol 72:681–687CrossRefGoogle Scholar
  21. 21.
    Evans AG (1990) Perspective on the development of high-toughness ceramics. J Am Ceram Soc 73:187–206CrossRefGoogle Scholar
  22. 22.
    Bouville F, Maire E, Meille S, Van de Moortèle B, Stevenson AJ, Deville S (2014) Strong, tough and stiff bioinspired ceramics from brittle constituents. Nat Mater 13:508–514CrossRefGoogle Scholar
  23. 23.
    Launey ME, Ritchie RO (2009) On the fracture toughness of advanced materials. Adv Mater 21:2103–2110CrossRefGoogle Scholar
  24. 24.
    Livanov K, Jelitto H, Bar-On B, Schulte K, Schneider GA, Wagner DH (2015) Tough alumina/polymer layered composites with high ceramic content. J Am Ceram Soc 98:1285–1291CrossRefGoogle Scholar
  25. 25.
    Mirkhalaf M, Dastjerdi AK, Barthelat F (2014) Overcoming the brittleness of glass through bio-inspiration and micro-architecture. Nat Commun 5:3166CrossRefGoogle Scholar
  26. 26.
    Behr S, Köllner A, Schneider GA (2016) Tailoring toughness and mechanical reliability by controlled defects: nature-inspired composite laminates of laser-perforated yttria-stabilized zirconia. Adv Eng Mater 18(11):1877–1883CrossRefGoogle Scholar
  27. 27.
    Behr S, Jungblut L, Swain MV, Schneider GA (2016) Shear strength and interfacial toughness characterization of sapphire-epoxy interfaces for nacre-inspired composites. ACS Appl Mater Interfaces 8(40):27322–27331CrossRefGoogle Scholar
  28. 28.
    Ritchie RO (2011) The conflicts between strength and toughness. Nat Mater 10:817–822CrossRefGoogle Scholar
  29. 29.
    Norman DA, Robertson RE (2003) The effect of fiber orientation on the toughening of short fiber-reinforced polymers. J Appl Polym Sci 90:2740–2751CrossRefGoogle Scholar
  30. 30.
    Drzal LT, Rich MJ, Lloyd PF (1983) Adhesion of graphite fibers to epoxy matrices: I. The role of fiber surface treatment. J Adhesion 16:1–30CrossRefGoogle Scholar
  31. 31.
    Leger L, Creton C (2008) Adhesion mechanisms at soft polymer interfaces. Phil Trans R Soc A 366:1425–1442CrossRefGoogle Scholar
  32. 32.
    Kim JK, Ma YW (1998) Engineered interfaces in fiber reinforced composite. 1st edn, Chapter 6. Elsevier, New York, pp 239–277Google Scholar
  33. 33.
    Livanov K, Nissenbaum A, Wagner HD (2016) Nanocomposite thin film coatings for brittle materials. Nanocomposites 2:162–168CrossRefGoogle Scholar
  34. 34.
    Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128–130:37–46CrossRefGoogle Scholar
  35. 35.
    Kuebler J, Blugan G, Jelitto H, Schneider GA, Dobedoe R (2007) Structural micro-layered ceramics with surfaces under tension and compression with increasing apparent fracture toughness. Key Eng Mater 336–338:2564–2568CrossRefGoogle Scholar
  36. 36.
    Jelitto H, Hackbarth F, Özcoban H, Schneider GA (2013) Automated control of stable crack growth for r-curve measurements in brittle materials. Exp Mech 53:163–170CrossRefGoogle Scholar
  37. 37.
    Jelitto H, Felten F, Swain MV, Balke H, Schneider GA (2007) Measurement of the total energy release rate for cracks in PZT under combined mechanical and electrical loading. J Appl Mech 74:1197–1211CrossRefGoogle Scholar
  38. 38.
    Krause RF Jr (1988) Rising fracture toughness from the bending strength of indented alumina beams. J Am Ceram Soc 71:338–343CrossRefGoogle Scholar
  39. 39.
    Tattersall HG, Tappin G (1966) The work of fracture and its measurement in metals, ceramics and other materials. J Mater Sci 1:296–301. doi: 10.1007/BF00550177 CrossRefGoogle Scholar
  40. 40.
    dos Santos SF, Rodrigues JA (2003) Correlation between fracture toughness, work of fracture and fractal dimensions of alumina-mullite-zirconia composites. Mater Res 6:219–222CrossRefGoogle Scholar
  41. 41.
    Piggott M (2002) Load bearing fibre composites, 2nd edn, Chapter 6, Kluwer, p 196Google Scholar
  42. 42.
    Belenky A, Rittel D (2012) Static and dynamic flexural strength of 99.5% alumina: relation to porosity. Mech Mater 48:43–55CrossRefGoogle Scholar
  43. 43.
    Asloun EM, Nardin M, Schultz J (1989) Stress transfer in single-fibre composites: effect of adhesion, elastic modulus of fibre and matrix, and polymer chain mobility. J Mater Sci 24:1835–1844. doi: 10.1007/BF01105713 CrossRefGoogle Scholar
  44. 44.
    Yang L, He X, Mei L, Tong L, Wanga R, Li Y (2012) Interfacial shear behavior of 3D composites reinforced with CNT-grafted carbon fibers. Compos A 43:1410–1418CrossRefGoogle Scholar
  45. 45.
    Yang L, Greenfeld I, Wagner HD (2016) Toughness of carbon nanotubes conforms to classic fracture mechanics. Sci Adv 2:e1500969CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Materials and InterfacesWeizmann Institute of ScienceRehovotIsrael
  2. 2.Institute of Advanced CeramicsHamburg University of TechnologyHamburgGermany

Personalised recommendations