Journal of Materials Science

, Volume 53, Issue 8, pp 5719–5732 | Cite as

Shock compression of Cu x Zr100−x metallic glasses from molecular dynamics simulations

  • Peng Wen
  • Brian Demaske
  • Douglas E. Spearot
  • Simon R. Phillpot
Interface Behavior


The shock response of Cu x Zr100−x (x = 30, 50 and 70) metallic glasses (MGs) is characterized using large-scale molecular dynamics simulations. A wide range of piston velocities U p = 0.125–2.5 km/s are simulated corresponding to shock pressures from 3 to 130 GPa. Independent of composition, the metallic glasses exhibit the following shock wave propagation regimes: (1) single elastic shock wave for U p < 0.25 km/s, (2) split elastic and plastic shock waves for 0.25 < U p < 0.75 km/s and (3) overdriven plastic shock wave with a narrow elastic precursor for U p > 0.75 km/s. Within the split wave and overdriven regimes, the amplitude of the elastic precursor increases with increasing shock intensity, thereby indicating a pressure-dependent yield criterion. Hugoniot states are strongly dependent on the Cu content of the MG with Cu70Zr30 exhibiting a much higher resistance to plastic deformation than either Cu50Zr50 or Cu30Zr70.



PW is supported by China Scholarship Council No. 201606840102. The authors acknowledge University of Florida Research Computing for providing computational resources and support that have contributed to the research results reported in this publication.


  1. 1.
    Schuh CA, Hufnagel TC, Ramamurty U (2007) Mechanical behavior of amorphous alloys. Acta Mater 55(12):4067–4109CrossRefGoogle Scholar
  2. 2.
    Inoue A, Takeuchi A (2011) Recent development and application products of bulk glassy alloys. Acta Mater 59(6):2243–2267CrossRefGoogle Scholar
  3. 3.
    Cheng YQ, Ma E (2011) Atomic-level structure and structure–property relationship in metallic glasses. Prog Mater Sci 56(4):379–473CrossRefGoogle Scholar
  4. 4.
    Wang WH (2012) The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog Mater Sci 57(3):487–656CrossRefGoogle Scholar
  5. 5.
    Hufnagel TC, Schuh CA, Falk ML (2016) Deformation of metallic glasses: recent developments in theory, simulations, and experiments. Acta Mater 109:375–393CrossRefGoogle Scholar
  6. 6.
    Mashimo T, Togo H, Zhang Y, Uemura Y, Kinoshita T, Kodama M, Kawamura Y (2006) Hugoniot-compression curve of Zr-based bulk metallic glass. Appl Phys Lett 89(24):31–33CrossRefGoogle Scholar
  7. 7.
    Turneaure SJ, Winey JM, Gupta YM (2006) Response of a Zr-based bulk amorphous alloy to shock wave compression. J Appl Phys 100(6):063522–063532CrossRefGoogle Scholar
  8. 8.
    Martin M, Sekine T, Kobayashi T, Kecskes L, Thadhani NN (2007) High-pressure equation of the state of a zirconium-based bulk metallic glass. Metall Mater Trans A 38(11):2689–2696CrossRefGoogle Scholar
  9. 9.
    Xi F, Yu Y, Dai C, Zhang Y, Cai L (2010) Shock compression response of a Zr-based bulk metallic glass up to 110 GPa. J Appl Phys 108(8):1–5CrossRefGoogle Scholar
  10. 10.
    Luo B, Wang G, Tan F, Zhao J, Liu C, Sun C (2015) Dynamic behaviors of a Zr-based bulk metallic glass under ramp wave and shock wave loading. AIP Adv 5(6):067161–067169CrossRefGoogle Scholar
  11. 11.
    Yu Y-Y, Xi F, Dai C-D, Cai L-C, Tan Y, Li X-M, Wu Q, Tan H (2015) Dynamic strength behavior of a Zr-based bulk metallic glass under shock loading. Chin Phys B 24(6):066201–066206CrossRefGoogle Scholar
  12. 12.
    Huang X, Ling Z, Zhang HS, Ma J, Dai LH (2011) How does spallation microdamage nucleate in bulk amorphous alloys under shock loading. J Appl Phys 110:103519–103528CrossRefGoogle Scholar
  13. 13.
    Lu L, Li C, Wang WH, Zhu MH, Gong XL, Luo SN (2016) Ductile fracture of bulk metallic glass Zr50Cu40Al10 under high strain-rate loading. Mater Sci Eng A 651:848–853CrossRefGoogle Scholar
  14. 14.
    Jarmakani HN, Bringa EM, Erhart P, Remington BA, Wang YM, Vo NQ, Meyers MA (2008) Molecular dynamics simulations of shock compression of nickel: from monocrystals to nanocrystals. Acta Mater 56(19):5584–5604CrossRefGoogle Scholar
  15. 15.
    Cao B, Bringa EM, Meyers MA (2007) Shock compression of monocrystalline copper: atomistic simulations. Metall Mater Trans A 38(11):2681–2688CrossRefGoogle Scholar
  16. 16.
    Bringa EM, Cazamias JU, Erhart P, Stölken J, Tanushev N, Wirth BD, Rudd RE, Caturla MJ (2004) Atomistic shock Hugoniot simulation of single-crystal copper. J Appl Phys 96(7):3793–3799CrossRefGoogle Scholar
  17. 17.
    Bringa EM, Rosolankova K, Rudd RE, Remington BA, Wark JS, Duchaineau M, Kalantar DH, Hawreliak J, Belak J (2006) Shock deformation of face-centred-cubic metals on subnanosecond timescales. Nat Mater 5(10):805–809CrossRefGoogle Scholar
  18. 18.
    Wen P, Tao G, Pang C, Yuan S, Wang Q (2016) A molecular dynamics study of the shock-induced defect microstructure in single crystal Cu. Comput Mater Sci 124:304–310CrossRefGoogle Scholar
  19. 19.
    Sichani MM, Spearot DE (2016) A molecular dynamics study of dislocation density generation and plastic relaxation during shock of single crystal Cu. J Appl Phys 120:045902–045911CrossRefGoogle Scholar
  20. 20.
    Ravelo R, Germann TC, Guerrero O, An Q, Holian BL (2013) Shock-induced plasticity in tantalum single crystals: interatomic potentials and large-scale molecular-dynamics simulations. Phys Rev B Condens Matter Mater Phys 88(13):134101–134118CrossRefGoogle Scholar
  21. 21.
    Zhakhovsky VV, Budzevich MM, Inogamov NA, Oleynik II, White CT (2011) Two-zone elastic-plastic single shock waves in solids. Phys Rev Lett 107(September):1–4Google Scholar
  22. 22.
    Kadau K, Germann TC, Lomdahl PS, Holian BL (2005) Atomistic simulations of shock-induced transformations and their orientation dependence in bcc Fe single crystals. Phys Rev B Condens Matter Mater Phys 72(6):1–14CrossRefGoogle Scholar
  23. 23.
    Tramontina D, Erhart P, Germann T, Hawreliak J, Higginbotham A, Park N, Ravelo R, Stukowski A, Suggit M, Tang Y, Wark J, Bringa E (2014) Molecular dynamics simulations of shock-induced plasticity in tantalum. High Energy Density Phys 10:9–15CrossRefGoogle Scholar
  24. 24.
    Sichani MM, Spearot DE (2016) A molecular dynamics study of the role of grain size and orientation on compression of nanocrystalline Cu during shock. Comput Mater Sci J 108:226–232CrossRefGoogle Scholar
  25. 25.
    Bringa EM, Caro A, Wang Y, Victoria M, McNaney JM, Remington BA, Smith RF, Torralva BR, Van Swygenhoven H (2005) Ultrahigh strength in nanocrystalline materials under shock loading. Science 309(5742):1838–1841CrossRefGoogle Scholar
  26. 26.
    Ma W, Zhu W, Hou Y (2013) A comparative study on shock compression of nanocrystalline Al and Cu: shock profiles and microscopic views of plasticity. J Appl Phys 114(16):1–9Google Scholar
  27. 27.
    Ma W, Zhu W, Fuqian J (2010) The shock-front structure of nanocrystalline aluminum. Appl Phys Lett 97(12):121903–121905CrossRefGoogle Scholar
  28. 28.
    Jian WR, Yao XH, Wang L, Tang XC, Luo SN (2015) Short- and medium-range orders in Cu46Zr54 metallic glasses under shock compression. J Appl Phys 118(1):15901–15909CrossRefGoogle Scholar
  29. 29.
    Arman B, Luo SN, Germann TC, ÇaǧIn T (2010) Dynamic response of Cu46Zr54 metallic glass to high-strain-rate shock loading: Plasticity, spall, and atomic-level structures. Phys Rev B Condens Matter Mater Phys 81:1–12CrossRefGoogle Scholar
  30. 30.
    Marinier S, Lewis LJ (2015) Femtosecond laser ablation of CuxZr1−x bulk metallic glasses: a molecular dynamics study. Phys Rev B 92(18):184108–184116CrossRefGoogle Scholar
  31. 31.
    Huang X, Ling Z, Dai LH (2014) Ductile-to-brittle transition in spallation of metallic glasses. J Appl Phys 116(14):143503–143510CrossRefGoogle Scholar
  32. 32.
    Chen K, Yu Y, Zhang Z, Shi SQ (2016) Shock-induced time-dependent strength behavior in amorphous alloys from a microscopic view. Scr Mater 120:62–66CrossRefGoogle Scholar
  33. 33.
    Hao SG, Wang CZ, Kramer MJ, Ho KM (2010) Microscopic origin of slow dynamics at the good glass forming composition range in Zr1−xCux metallic liquids. J Appl Phys 107(5):053511–053516CrossRefGoogle Scholar
  34. 34.
    Peng HL, Li MZ, Wang WH, Wang C, Ho KM (2010) Effect of local structures and atomic packing on glass forming ability in CuxZr100−x metallic glasses. Appl Phys Lett 96(21901):30–32Google Scholar
  35. 35.
    Sha ZD, Feng YP, Li Y (2010) Statistical composition-structure-property correlation and glass-forming ability based on the full icosahedra in Cu–Zr metallic glasses. Appl Phys Lett 96:61903–61905CrossRefGoogle Scholar
  36. 36.
    Lee J-C, Park K-W, Kim K-H, Fleury E, Lee B-J, Wakeda M, Shibutani Y (2007) Origin of the plasticity in bulk amorphous alloys. J Mater Res 22:3087–3097CrossRefGoogle Scholar
  37. 37.
    Park KW, Jang J, Wakeda M, Shibutani Y, Lee JC (2007) Atomic packing density and its influence on the properties of Cu–Zr amorphous alloys. Scr Mater 57(9):805–808CrossRefGoogle Scholar
  38. 38.
    Cheng YQ, Sheng HW, Ma E (2008) Relationship between structure, dynamics, and mechanical properties in metallic glass-forming alloys. Phys Rev B Condens Matter Mater Phys 78(1):1–7CrossRefGoogle Scholar
  39. 39.
    Mattern N, Schöps A, Kühn U, Acker J, Khvostikova O, Eckert J (2008) Structural behavior of CuxZr100−x metallic glass (x = 35 − 70). J. Non Cryst Solids 354(10–11):1054–1060CrossRefGoogle Scholar
  40. 40.
    Cheng YQ, Cao AJ, Sheng HW, Ma E (2008) Local order influences initiation of plastic flow in metallic glass: effects of alloy composition and sample cooling history. Acta Mater 56(18):5263–5275CrossRefGoogle Scholar
  41. 41.
    Mattern N, Jovari P, Kaban I, Gruner S, Elsner A, Kokotin V, Franz H, Beuneu B, Eckert J (2009) Short-range order of Cu–Zr metallic glasses. J Alloy Compd 485:163–169CrossRefGoogle Scholar
  42. 42.
    Lagogianni AE, Almyras G, Lekka CE, Papageorgiou DG (2009) Structural characteristics of CuxZr100−x metallic glasses by molecular dynamics simulations. J Alloys Compd 483(1):658–661CrossRefGoogle Scholar
  43. 43.
    Li M, Wang C, Hao S, Kramer M, Ho K (2009) Structural heterogeneity and medium-range order in ZrxCu100−x metallic glasses. Phys Rev B 80(18):1–7CrossRefGoogle Scholar
  44. 44.
    Cheng YQ, Ma E, Sheng HW (2009) Atomic level structure in multicomponent bulk metallic glass. Phys Rev Lett 102(24):245501–245504CrossRefGoogle Scholar
  45. 45.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19CrossRefGoogle Scholar
  46. 46.
    Mendelev MI, Sordelet DJ, Kramer MJ (2007) Using atomistic computer simulations to analyze x-ray diffraction data from metallic glasses. J Appl Phys 102(4):043501–043507CrossRefGoogle Scholar
  47. 47.
    Davison L, Graham RA (1979) Shock compression of solids. Phys Rep 55(4):255–379CrossRefGoogle Scholar
  48. 48.
    Davison L (2008) Fundamentals of shock wave propagation in solids. Springer, Berlin HeidelbergGoogle Scholar
  49. 49.
    Okamoto H (2008) Cu–Zr (Copper–Zirconium). J Phase Equilibria Diffus 29(2):204CrossRefGoogle Scholar
  50. 50.
    Debenedetti PG, Stillinger FH (2001) Supercooled liquids and the glass transition. Nature 410(March):259–267CrossRefGoogle Scholar
  51. 51.
    Holian BL (1998) Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations. Science 280(5372):2085–2088CrossRefGoogle Scholar
  52. 52.
    Meyers MA, Jarmakani H, Bringa EM, Remington BA (2009) Dislocations in shock compression and release. Dislocations Solids 15:91–197CrossRefGoogle Scholar
  53. 53.
    Chen K, Yu Y, Zhang Z, Shi S (2016) Shock-induced time-dependent strength behavior in amorphous alloys from amicroscopic view. Scr Mater 120(15):62–66CrossRefGoogle Scholar
  54. 54.
    Davis LA, Kavesh S (1975) Deformation and fracture of an amorphous metallic alloy at high pressure. J Mater Sci 10(3):453–459. doi: 10.1007/BF00543690 CrossRefGoogle Scholar
  55. 55.
    Donovan PE (1989) A yield criterion for Pd40Ni40P20 metallic glass. Acta Metall 37(2):445–456CrossRefGoogle Scholar
  56. 56.
    Flores KM, Dauskardt RH (2001) Mean stress effects on flow localization and failure in a bulk metallic glass. Acta Mater 49(13):2527–2537CrossRefGoogle Scholar
  57. 57.
    Lewandowski JJ, Lowhaphandu P (2002) Effects of hydrostatic pressure on the flow and fracture of a bulk amorphous metal. Philos Mag A 82(17–18):3427–3441CrossRefGoogle Scholar
  58. 58.
    Lowhaphandu P, Montgomery SL, Lewandowski JJ (1999) Effects of superimposed hydrostatic pressure on flow and fracture of a Zr–Ti–Ni–Cu–Be bulk amorphous alloy. Scr Mater 41(1):19–24CrossRefGoogle Scholar
  59. 59.
    Lu J, Ravichandran G (2003) Pressure-dependent flow behavior of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass. J Mater Res 18(9):2039–2049CrossRefGoogle Scholar
  60. 60.
    Vaidyanathan R, Dao M, Ravichandran G, Suresh S (2001) Study of mechanical deformation in bulk metallic glass through instrumented indentation. Acta Mater 49(18):3781–3789CrossRefGoogle Scholar
  61. 61.
    Peker A, Johnson WL (1993) A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl Phys Lett 63(17):2342–2344CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Peng Wen
    • 1
    • 2
  • Brian Demaske
    • 2
  • Douglas E. Spearot
    • 3
  • Simon R. Phillpot
    • 2
  1. 1.School of Energy and Power EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China
  2. 2.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA
  3. 3.Department of Mechanical and Aerospace EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations