Skip to main content

Advertisement

Log in

Shock compression of Cu x Zr100−x metallic glasses from molecular dynamics simulations

  • Interface Behavior
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The shock response of Cu x Zr100−x (x = 30, 50 and 70) metallic glasses (MGs) is characterized using large-scale molecular dynamics simulations. A wide range of piston velocities U p = 0.125–2.5 km/s are simulated corresponding to shock pressures from 3 to 130 GPa. Independent of composition, the metallic glasses exhibit the following shock wave propagation regimes: (1) single elastic shock wave for U p < 0.25 km/s, (2) split elastic and plastic shock waves for 0.25 < U p < 0.75 km/s and (3) overdriven plastic shock wave with a narrow elastic precursor for U p > 0.75 km/s. Within the split wave and overdriven regimes, the amplitude of the elastic precursor increases with increasing shock intensity, thereby indicating a pressure-dependent yield criterion. Hugoniot states are strongly dependent on the Cu content of the MG with Cu70Zr30 exhibiting a much higher resistance to plastic deformation than either Cu50Zr50 or Cu30Zr70.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Schuh CA, Hufnagel TC, Ramamurty U (2007) Mechanical behavior of amorphous alloys. Acta Mater 55(12):4067–4109

    Article  Google Scholar 

  2. Inoue A, Takeuchi A (2011) Recent development and application products of bulk glassy alloys. Acta Mater 59(6):2243–2267

    Article  Google Scholar 

  3. Cheng YQ, Ma E (2011) Atomic-level structure and structure–property relationship in metallic glasses. Prog Mater Sci 56(4):379–473

    Article  Google Scholar 

  4. Wang WH (2012) The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog Mater Sci 57(3):487–656

    Article  Google Scholar 

  5. Hufnagel TC, Schuh CA, Falk ML (2016) Deformation of metallic glasses: recent developments in theory, simulations, and experiments. Acta Mater 109:375–393

    Article  Google Scholar 

  6. Mashimo T, Togo H, Zhang Y, Uemura Y, Kinoshita T, Kodama M, Kawamura Y (2006) Hugoniot-compression curve of Zr-based bulk metallic glass. Appl Phys Lett 89(24):31–33

    Article  Google Scholar 

  7. Turneaure SJ, Winey JM, Gupta YM (2006) Response of a Zr-based bulk amorphous alloy to shock wave compression. J Appl Phys 100(6):063522–063532

    Article  Google Scholar 

  8. Martin M, Sekine T, Kobayashi T, Kecskes L, Thadhani NN (2007) High-pressure equation of the state of a zirconium-based bulk metallic glass. Metall Mater Trans A 38(11):2689–2696

    Article  Google Scholar 

  9. Xi F, Yu Y, Dai C, Zhang Y, Cai L (2010) Shock compression response of a Zr-based bulk metallic glass up to 110 GPa. J Appl Phys 108(8):1–5

    Article  Google Scholar 

  10. Luo B, Wang G, Tan F, Zhao J, Liu C, Sun C (2015) Dynamic behaviors of a Zr-based bulk metallic glass under ramp wave and shock wave loading. AIP Adv 5(6):067161–067169

    Article  Google Scholar 

  11. Yu Y-Y, Xi F, Dai C-D, Cai L-C, Tan Y, Li X-M, Wu Q, Tan H (2015) Dynamic strength behavior of a Zr-based bulk metallic glass under shock loading. Chin Phys B 24(6):066201–066206

    Article  Google Scholar 

  12. Huang X, Ling Z, Zhang HS, Ma J, Dai LH (2011) How does spallation microdamage nucleate in bulk amorphous alloys under shock loading. J Appl Phys 110:103519–103528

    Article  Google Scholar 

  13. Lu L, Li C, Wang WH, Zhu MH, Gong XL, Luo SN (2016) Ductile fracture of bulk metallic glass Zr50Cu40Al10 under high strain-rate loading. Mater Sci Eng A 651:848–853

    Article  Google Scholar 

  14. Jarmakani HN, Bringa EM, Erhart P, Remington BA, Wang YM, Vo NQ, Meyers MA (2008) Molecular dynamics simulations of shock compression of nickel: from monocrystals to nanocrystals. Acta Mater 56(19):5584–5604

    Article  Google Scholar 

  15. Cao B, Bringa EM, Meyers MA (2007) Shock compression of monocrystalline copper: atomistic simulations. Metall Mater Trans A 38(11):2681–2688

    Article  Google Scholar 

  16. Bringa EM, Cazamias JU, Erhart P, Stölken J, Tanushev N, Wirth BD, Rudd RE, Caturla MJ (2004) Atomistic shock Hugoniot simulation of single-crystal copper. J Appl Phys 96(7):3793–3799

    Article  Google Scholar 

  17. Bringa EM, Rosolankova K, Rudd RE, Remington BA, Wark JS, Duchaineau M, Kalantar DH, Hawreliak J, Belak J (2006) Shock deformation of face-centred-cubic metals on subnanosecond timescales. Nat Mater 5(10):805–809

    Article  Google Scholar 

  18. Wen P, Tao G, Pang C, Yuan S, Wang Q (2016) A molecular dynamics study of the shock-induced defect microstructure in single crystal Cu. Comput Mater Sci 124:304–310

    Article  Google Scholar 

  19. Sichani MM, Spearot DE (2016) A molecular dynamics study of dislocation density generation and plastic relaxation during shock of single crystal Cu. J Appl Phys 120:045902–045911

    Article  Google Scholar 

  20. Ravelo R, Germann TC, Guerrero O, An Q, Holian BL (2013) Shock-induced plasticity in tantalum single crystals: interatomic potentials and large-scale molecular-dynamics simulations. Phys Rev B Condens Matter Mater Phys 88(13):134101–134118

    Article  Google Scholar 

  21. Zhakhovsky VV, Budzevich MM, Inogamov NA, Oleynik II, White CT (2011) Two-zone elastic-plastic single shock waves in solids. Phys Rev Lett 107(September):1–4

    Google Scholar 

  22. Kadau K, Germann TC, Lomdahl PS, Holian BL (2005) Atomistic simulations of shock-induced transformations and their orientation dependence in bcc Fe single crystals. Phys Rev B Condens Matter Mater Phys 72(6):1–14

    Article  Google Scholar 

  23. Tramontina D, Erhart P, Germann T, Hawreliak J, Higginbotham A, Park N, Ravelo R, Stukowski A, Suggit M, Tang Y, Wark J, Bringa E (2014) Molecular dynamics simulations of shock-induced plasticity in tantalum. High Energy Density Phys 10:9–15

    Article  Google Scholar 

  24. Sichani MM, Spearot DE (2016) A molecular dynamics study of the role of grain size and orientation on compression of nanocrystalline Cu during shock. Comput Mater Sci J 108:226–232

    Article  Google Scholar 

  25. Bringa EM, Caro A, Wang Y, Victoria M, McNaney JM, Remington BA, Smith RF, Torralva BR, Van Swygenhoven H (2005) Ultrahigh strength in nanocrystalline materials under shock loading. Science 309(5742):1838–1841

    Article  Google Scholar 

  26. Ma W, Zhu W, Hou Y (2013) A comparative study on shock compression of nanocrystalline Al and Cu: shock profiles and microscopic views of plasticity. J Appl Phys 114(16):1–9

    Google Scholar 

  27. Ma W, Zhu W, Fuqian J (2010) The shock-front structure of nanocrystalline aluminum. Appl Phys Lett 97(12):121903–121905

    Article  Google Scholar 

  28. Jian WR, Yao XH, Wang L, Tang XC, Luo SN (2015) Short- and medium-range orders in Cu46Zr54 metallic glasses under shock compression. J Appl Phys 118(1):15901–15909

    Article  Google Scholar 

  29. Arman B, Luo SN, Germann TC, ÇaǧIn T (2010) Dynamic response of Cu46Zr54 metallic glass to high-strain-rate shock loading: Plasticity, spall, and atomic-level structures. Phys Rev B Condens Matter Mater Phys 81:1–12

    Article  Google Scholar 

  30. Marinier S, Lewis LJ (2015) Femtosecond laser ablation of Cu x Zr1−x bulk metallic glasses: a molecular dynamics study. Phys Rev B 92(18):184108–184116

    Article  Google Scholar 

  31. Huang X, Ling Z, Dai LH (2014) Ductile-to-brittle transition in spallation of metallic glasses. J Appl Phys 116(14):143503–143510

    Article  Google Scholar 

  32. Chen K, Yu Y, Zhang Z, Shi SQ (2016) Shock-induced time-dependent strength behavior in amorphous alloys from a microscopic view. Scr Mater 120:62–66

    Article  Google Scholar 

  33. Hao SG, Wang CZ, Kramer MJ, Ho KM (2010) Microscopic origin of slow dynamics at the good glass forming composition range in Zr1−x Cu x metallic liquids. J Appl Phys 107(5):053511–053516

    Article  Google Scholar 

  34. Peng HL, Li MZ, Wang WH, Wang C, Ho KM (2010) Effect of local structures and atomic packing on glass forming ability in Cu x Zr100−x metallic glasses. Appl Phys Lett 96(21901):30–32

    Google Scholar 

  35. Sha ZD, Feng YP, Li Y (2010) Statistical composition-structure-property correlation and glass-forming ability based on the full icosahedra in Cu–Zr metallic glasses. Appl Phys Lett 96:61903–61905

    Article  Google Scholar 

  36. Lee J-C, Park K-W, Kim K-H, Fleury E, Lee B-J, Wakeda M, Shibutani Y (2007) Origin of the plasticity in bulk amorphous alloys. J Mater Res 22:3087–3097

    Article  Google Scholar 

  37. Park KW, Jang J, Wakeda M, Shibutani Y, Lee JC (2007) Atomic packing density and its influence on the properties of Cu–Zr amorphous alloys. Scr Mater 57(9):805–808

    Article  Google Scholar 

  38. Cheng YQ, Sheng HW, Ma E (2008) Relationship between structure, dynamics, and mechanical properties in metallic glass-forming alloys. Phys Rev B Condens Matter Mater Phys 78(1):1–7

    Article  Google Scholar 

  39. Mattern N, Schöps A, Kühn U, Acker J, Khvostikova O, Eckert J (2008) Structural behavior of Cu x Zr100−x metallic glass (x = 35 − 70). J. Non Cryst Solids 354(10–11):1054–1060

    Article  Google Scholar 

  40. Cheng YQ, Cao AJ, Sheng HW, Ma E (2008) Local order influences initiation of plastic flow in metallic glass: effects of alloy composition and sample cooling history. Acta Mater 56(18):5263–5275

    Article  Google Scholar 

  41. Mattern N, Jovari P, Kaban I, Gruner S, Elsner A, Kokotin V, Franz H, Beuneu B, Eckert J (2009) Short-range order of Cu–Zr metallic glasses. J Alloy Compd 485:163–169

    Article  Google Scholar 

  42. Lagogianni AE, Almyras G, Lekka CE, Papageorgiou DG (2009) Structural characteristics of Cu x Zr100−x metallic glasses by molecular dynamics simulations. J Alloys Compd 483(1):658–661

    Article  Google Scholar 

  43. Li M, Wang C, Hao S, Kramer M, Ho K (2009) Structural heterogeneity and medium-range order in Zr x Cu100−x metallic glasses. Phys Rev B 80(18):1–7

    Article  Google Scholar 

  44. Cheng YQ, Ma E, Sheng HW (2009) Atomic level structure in multicomponent bulk metallic glass. Phys Rev Lett 102(24):245501–245504

    Article  Google Scholar 

  45. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  Google Scholar 

  46. Mendelev MI, Sordelet DJ, Kramer MJ (2007) Using atomistic computer simulations to analyze x-ray diffraction data from metallic glasses. J Appl Phys 102(4):043501–043507

    Article  Google Scholar 

  47. Davison L, Graham RA (1979) Shock compression of solids. Phys Rep 55(4):255–379

    Article  Google Scholar 

  48. Davison L (2008) Fundamentals of shock wave propagation in solids. Springer, Berlin Heidelberg

    Google Scholar 

  49. Okamoto H (2008) Cu–Zr (Copper–Zirconium). J Phase Equilibria Diffus 29(2):204

    Article  Google Scholar 

  50. Debenedetti PG, Stillinger FH (2001) Supercooled liquids and the glass transition. Nature 410(March):259–267

    Article  Google Scholar 

  51. Holian BL (1998) Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations. Science 280(5372):2085–2088

    Article  Google Scholar 

  52. Meyers MA, Jarmakani H, Bringa EM, Remington BA (2009) Dislocations in shock compression and release. Dislocations Solids 15:91–197

    Article  Google Scholar 

  53. Chen K, Yu Y, Zhang Z, Shi S (2016) Shock-induced time-dependent strength behavior in amorphous alloys from amicroscopic view. Scr Mater 120(15):62–66

    Article  Google Scholar 

  54. Davis LA, Kavesh S (1975) Deformation and fracture of an amorphous metallic alloy at high pressure. J Mater Sci 10(3):453–459. doi:10.1007/BF00543690

    Article  Google Scholar 

  55. Donovan PE (1989) A yield criterion for Pd40Ni40P20 metallic glass. Acta Metall 37(2):445–456

    Article  Google Scholar 

  56. Flores KM, Dauskardt RH (2001) Mean stress effects on flow localization and failure in a bulk metallic glass. Acta Mater 49(13):2527–2537

    Article  Google Scholar 

  57. Lewandowski JJ, Lowhaphandu P (2002) Effects of hydrostatic pressure on the flow and fracture of a bulk amorphous metal. Philos Mag A 82(17–18):3427–3441

    Article  Google Scholar 

  58. Lowhaphandu P, Montgomery SL, Lewandowski JJ (1999) Effects of superimposed hydrostatic pressure on flow and fracture of a Zr–Ti–Ni–Cu–Be bulk amorphous alloy. Scr Mater 41(1):19–24

    Article  Google Scholar 

  59. Lu J, Ravichandran G (2003) Pressure-dependent flow behavior of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass. J Mater Res 18(9):2039–2049

    Article  Google Scholar 

  60. Vaidyanathan R, Dao M, Ravichandran G, Suresh S (2001) Study of mechanical deformation in bulk metallic glass through instrumented indentation. Acta Mater 49(18):3781–3789

    Article  Google Scholar 

  61. Peker A, Johnson WL (1993) A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl Phys Lett 63(17):2342–2344

    Article  Google Scholar 

Download references

Acknowledgements

PW is supported by China Scholarship Council No. 201606840102. The authors acknowledge University of Florida Research Computing for providing computational resources and support that have contributed to the research results reported in this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon R. Phillpot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, P., Demaske, B., Spearot, D.E. et al. Shock compression of Cu x Zr100−x metallic glasses from molecular dynamics simulations. J Mater Sci 53, 5719–5732 (2018). https://doi.org/10.1007/s10853-017-1666-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1666-5

Keywords

Navigation