Journal of Materials Science

, Volume 53, Issue 8, pp 5860–5878 | Cite as

Effect of layer thickness on the mechanical behaviour of oxidation-strengthened Zr/Nb nanoscale multilayers

  • M. A. Monclús
  • M. Callisti
  • T. Polcar
  • L. W. Yang
  • J. M. Molina-Aldareguía
  • J. LLorca
Interface Behavior


The effect of bilayer thickness (L) reduction on the oxidation-induced strengthening of Zr/Nb nanoscale metallic multilayers (NMM) is investigated. Zr/Nb NMMs with L = 10 and 75 nm were annealed at 350 °C for a time ranging between 2 and 336 h, and the changes in structure and deformation behaviour were studied by nanoscale mechanical testing and analytical electron microscopy. Annealing led to the transformation of the Zr layers into ZrO2 after a few hours, while the Nb layers oxidised progressively at a much slower rate. The sequential oxidation of Zr and Nb layers was found to be key for the oxidation to take place without rupture of the multilayered structure and without coating spallation in all cases. However, the multilayers with the smallest bilayer thickness (L = 10 nm) presented superior damage tolerance and therefore structural integrity during the oxidation process, while for L = 75 nm the volumetric expansion associated with oxidation led to the formation of cracks at the interfaces and within the ZrO2 layers. As a result, the nanoindentation hardness increase after annealing was significantly higher for the nanolaminate with L = 10 nm. Comparison between nanoindentation and micropillar compression behaviour of the oxidised NMMs demonstrates that the hardness increase upon oxidation arises from the contribution of the residual stresses associated with the volume increase due to oxidation and to the higher strength of the oxides.



This investigation was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Advanced Grant VIRMETAL, Grant Agreement No. 669141), from the Madrid region under programme S2013/MIT-2775 (DIMMAT-CM), and by Czech Science Foundation, Grant No. 17-17921S. M. C. and T. P. acknowledge EPSRC Programme Grant EP/K040375/1 “South of England Analytical Electron Microscope”.


  1. 1.
    Misra A, Hirth JP, Hoagland RG (2005) Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater 53:4817–4825CrossRefGoogle Scholar
  2. 2.
    Wang J, Misra A (2011) An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr Opin Solid State Mater Sci 15:20–28CrossRefGoogle Scholar
  3. 3.
    Wang J, Zhou Q, Shao S, Misra A (2017) Strength and plasticity of nanolaminated materials. Mater Res Lett 5:1–19CrossRefGoogle Scholar
  4. 4.
    Piramanayagam SN (2007) Perpendicular recording media for hard disk drives. J Appl Phys 102:011301CrossRefGoogle Scholar
  5. 5.
    Andreas M, Kentaro T, David TM, Manfred A, Yoshiaki S, Yoshihiro I, Shouheng S, Fullerton EE (2002) Magnetic recording: advancing into the future. J Phys D Appl Phys 35:R157CrossRefGoogle Scholar
  6. 6.
    Chen P, Zhu M (2008) Recent progress in hydrogen storage. Mater Today 11:36–43CrossRefGoogle Scholar
  7. 7.
    Khafidz NZAK, Yaakob Z, Lim KL, Timmiati SN (2016) The kinetics of lightweight solid-state hydrogen storage materials: a review. Int J Hydrog Energy 41:13131–13151CrossRefGoogle Scholar
  8. 8.
    Holmberg K, Matthews A, Ronkainen H (1998) Coatings tribology—contact mechanisms and surface design. Tribol Int 31:107–120CrossRefGoogle Scholar
  9. 9.
    Callisti M, Karlik M, Polcar T (2016) Bubbles formation in helium ion irradiated Cu/W multilayer nanocomposites: effects on structure and mechanical properties. J Nucl Mater 473:18–27CrossRefGoogle Scholar
  10. 10.
    Callisti M, Lozano-Perez S, Polcar T (2016) Structural and mechanical properties of γ-irradiated Zr/Nb multilayer nanocomposites. Mater Lett 163:138–141CrossRefGoogle Scholar
  11. 11.
    Demkowicz MJ, Misra A, Caro A (2012) The role of interface structure in controlling high helium concentrations. Curr Opin Solid State Mater Sci 16:101–108CrossRefGoogle Scholar
  12. 12.
    Beyerlein IJ, Caro A, Demkowicz MJ, Mara NA, Misra A, Uberuaga BP (2013) Radiation damage tolerant nanomaterials. Mater Today 16:443–449CrossRefGoogle Scholar
  13. 13.
    Demkowicz MJ, Hoagland RG, Hirth JP (2008) Interface structure and radiation damage resistance in Cu–Nb multilayer nanocomposites. Phys Rev Lett 100:136102CrossRefGoogle Scholar
  14. 14.
    Wei QM, Li N, Mara N, Nastasi M, Misra A (2011) Suppression of irradiation hardening in nanoscale V/Ag multilayers. Acta Mater 59:6331–6340CrossRefGoogle Scholar
  15. 15.
    Fu EG, Misra A, Wang H, Shao L, Zhang X (2010) Interface enabled defects reduction in helium ion irradiated Cu/V nanolayers. J Nucl Mater 407:178–188CrossRefGoogle Scholar
  16. 16.
    Chen Y, Liu Y, Fu EG, Sun C, Yu KY, Song M, Li J, Wang YQ, Wang H, Zhang X (2015) Unusual size-dependent strengthening mechanisms in helium ion-irradiated immiscible coherent Cu/Co nanolayers. Acta Mater 84:393–404CrossRefGoogle Scholar
  17. 17.
    Lu YY, Kotoka R, Ligda JP, Cao BB, Yarmolenko SN, Schuster BE, Wei Q (2014) The microstructure and mechanical behavior of Mg/Ti multilayers as a function of individual layer thickness. Acta Mater 63:216–231CrossRefGoogle Scholar
  18. 18.
    Liu Y, Bufford D, Wang H, Sun C, Zhang X (2011) Mechanical properties of highly textured Cu/Ni multilayers. Acta Mater 59:1924–1933CrossRefGoogle Scholar
  19. 19.
    Chen Y, Liu Y, Sun C, Yu KY, Song M, Wang H, Zhang X (2012) Microstructure and strengthening mechanisms in Cu/Fe multilayers. Acta Mater 60:6312–6321CrossRefGoogle Scholar
  20. 20.
    Monclus MA, Karlik M, Callisti M, Frutos E, LLorca J, Polcar T, Molina-Aldareguia JM (2014) Microstructure and mechanical properties of physical vapor deposited Cu/W nanoscale multilayers: influence of layer thickness and temperature. Thin Solid Films 571:275–282CrossRefGoogle Scholar
  21. 21.
    Raghavan R, Harzer TP, Chawla V, Djaziri S, Phillipi B, Wehrs J, Wheeler JM, Michler J, Dehm G (2015) Comparing small scale plasticity of copper-chromium nanolayered and alloyed thin films at elevated temperatures. Acta Mater 93:175–186CrossRefGoogle Scholar
  22. 22.
    Kang BC, Kim HY, Kwon OY, Hong SH (2007) Bilayer thickness effects on nanoindentation behavior of Ag/Ni multilayers. Scripta Mater 57:703–706CrossRefGoogle Scholar
  23. 23.
    Zhu XY, Liu XJ, Zong RL, Zeng F, Pan F (2010) Microstructure and mechanical properties of nanoscale Cu/Ni multilayers. Mater Sci Eng A 527:1243–1248CrossRefGoogle Scholar
  24. 24.
    Yu KY, Liu Y, Rios S, Wang H, Zhang X (2013) Strengthening mechanisms of Ag/Ni immiscible multilayers with fcc/fcc interface. Surf Coat Technol 237:269–275CrossRefGoogle Scholar
  25. 25.
    Jankowski AF, Hayes JP, Saw CK (2007) Dimensional attributes in enhanced hardness of nanocrystalline Ta–V nanolaminates. Philos Mag 87:2323–2334CrossRefGoogle Scholar
  26. 26.
    Ham B, Zhang X (2011) High strength Mg/Nb nanolayer composites. Mater Sci Eng A 528:2028–2033CrossRefGoogle Scholar
  27. 27.
    Yang GH, Zhao B, Gao Y, Pan F (2005) Investigation of nanoindentation on Co/Mo multilayers by the continuous stiffness measurement technique. Surf Coat Technol 191:127–133CrossRefGoogle Scholar
  28. 28.
    Callisti M, Polcar T (2017) Combined size and texture-dependent deformation and strengthening mechanisms in Zr/Nb nano-multilayers. Acta Mater 124:247–260CrossRefGoogle Scholar
  29. 29.
    Zhou Q, Li JJ, Wang F, Huang P, Xu KW, Lu TJ (2016) Strain rate sensitivity of Cu/Ta multilayered films: comparison between grain boundary and heterophase interface. Scripta Mater 111:123–126CrossRefGoogle Scholar
  30. 30.
    Zhang JY, Li J, Liang XQ, Liu G, Sun J (2014) Achieving optimum mechanical performance in metallic nanolayered Cu/X (X = Zr, Cr) micropillars. Sci Rep 4:4205CrossRefGoogle Scholar
  31. 31.
    Zhang JY, Zhang X, Wang RH, Lei SY, Zhang P, Niu JJ, Liu G, Zhang GJ, Sun J (2011) Length-scale-dependent deformation and fracture behavior of Cu/X (X = Nb, Zr) multilayers: the constraining effects of the ductile phase on the brittle phase. Acta Mater 59:7368–7379CrossRefGoogle Scholar
  32. 32.
    Zhang JY, Lei S, Liu Y, Niu JJ, Chen Y, Liu G, Zhang X, Sun J (2012) Length scale-dependent deformation behavior of nanolayered Cu/Zr micropillars. Acta Mater 60:1610–1622CrossRefGoogle Scholar
  33. 33.
    Zhang JY, Lei S, Niu J, Liu Y, Liu G, Zhang X, Sun J (2012) Intrinsic and extrinsic size effects on deformation in nanolayered Cu/Zr micropillars: from bulk-like to small-volume materials behavior. Acta Mater 60:4054–4064CrossRefGoogle Scholar
  34. 34.
    Mara NA, Bhattacharyya D, Hoagland RG, Misra A (2008) Tensile behavior of 40 nm Cu/Nb nanoscale multilayers. Scr Mater 58:874–877CrossRefGoogle Scholar
  35. 35.
    Hattar K, Misra A, Dosanjh MRF, Dickerson P, Robertson IM, Hoagland RG (2012) Direct Observation of crack propagation in copper–niobium multilayers. J Eng Mater Technol 134:21014CrossRefGoogle Scholar
  36. 36.
    Mara NA, Bhattacharyya D, Dickerson P, Hoagland RG, Misra A (2008) Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl Phys Lett 92:10–13CrossRefGoogle Scholar
  37. 37.
    Carpenter JS, Zheng SJ, Zhang RF, Vogel SC, Beyerlein IJ, Mara NA (2013) Thermal stability of Cu–Nb nanolamellar composites fabricated via accumulative roll bonding. Philos Mag 93:718–735CrossRefGoogle Scholar
  38. 38.
    Zheng S, Beyerlein IJ, Carpenter JS, Kang K, Wang J, Han W (2013) High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nat Commun 4:1696CrossRefGoogle Scholar
  39. 39.
    Monclús MA, Zheng SJ, Mayeur JR, Beyerlein IJ, Mara NA, Polcar T, Llorca J, Molina-Aldareguía JM (2013) Optimum high temperature strength of two dimensional nanocomposites. APL Mater 1:52103CrossRefGoogle Scholar
  40. 40.
    Srinivasan D, Sanyal S, Corderman R, Subramanian PR (2006) Thermally stable nanomultilayer films of Cu/Mo. Metall Mater Trans A 37:995–1003CrossRefGoogle Scholar
  41. 41.
    Schweitz KO, Ratzkw K, Foord D, Thomas PJ, Greer AL, Geisler H, Chevalleir J, Bottiger J (2000) The microstructural development of Ag/Ni multilayers during annealing. Philos Mag A 80(8):1867–1877CrossRefGoogle Scholar
  42. 42.
    Lee H-J, Kwon K-W, Ryu C, Sinclair R (1999) Thermal stability of a Cu/Ta multilayer: an intriguing interfacial reaction. Acta Mater 47:3965–3975CrossRefGoogle Scholar
  43. 43.
    Hecker M, Pitschke W, Tietjen D, Schneider CM (2002) X-ray diffraction investigations of structural changes in CoyCu multilayers at elevated temperatures. Thin Solid Films 411:234–239CrossRefGoogle Scholar
  44. 44.
    Wen SP, Zong RL, Zeng F, Gu YL, Gao Y, Pan F (2008) Thermal stability of microstructure and mechanical properties of Ni/Ru multilayers. Surf Coat Technol 202:2040–2046CrossRefGoogle Scholar
  45. 45.
    Monclús MA, Callisti M, Polcar T, Yang LW, Molina-Aldareguía JM (2017) Selective oxidation-induced strengthening of Zr/Nb nanoscale multilayers. Acta Mater 122:1–10CrossRefGoogle Scholar
  46. 46.
    Eucken CM, Garde AM (1991) In: Zirconium in the nuclear industry: ninth international symposium, ASTM Spec (STP 1132). 1916 Race Street PhiladelphiaGoogle Scholar
  47. 47.
    Misra A, Demkowicz MJ, Zhang X, Hoagland RG (2007) The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 59:62–65CrossRefGoogle Scholar
  48. 48.
    Frutos E, Callisti M, Karlik M, Polcar T (2015) Length-scale-dependent mechanical behaviour of Zr/Nb multilayers as a function of individual layer thickness. Mater Sci Eng A 632:137–146CrossRefGoogle Scholar
  49. 49.
    Sneddon IN (1965) The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57CrossRefGoogle Scholar
  50. 50.
    Yang LW, Mayer C, Chawla N, Llorca J, Molina-Aldareguía JM (2016) Deformation mechanisms of ultra-thin Al layers in Al/SiC nanolaminates as a function of thickness and temperature. Philos Mag 96:3336–3355CrossRefGoogle Scholar
  51. 51.
    Lotfian S, Mayer C, Chawla N, Llorca J, Misra A, Baldwin JK, Molina-Aldareguía JM (2014) Effect of layer thickness on the high temperature mechanical properties of Al/SiC nanolaminates. Thin Solid Films 571:260–267CrossRefGoogle Scholar
  52. 52.
    Goswami R, Pande CS, Bernstein N, Johannes MD, Baker C, Villalobos G (2015) A high degree of enhancement of strength of sputter deposited Al/Al2O3 multilayers upon post annealing. Acta Mater 95:378–385CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.IMDEA Materials InstituteMadridSpain
  2. 2.Engineering Materials, Faculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUK
  3. 3.National Centre for Advanced Tribology (nCATS), Faculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUK
  4. 4.Department of Control Engineering, Faculty of Electrical EngineeringCzech Technical University in PraguePrague 6Czech Republic
  5. 5.Department of Materials ScienceUniversidad Politécnica de Madrid, E.T.S. de Ingenieros de CaminosMadridSpain
  6. 6.Department of Materials Science and MetallurgyCambridge UniversityCambridgeUK

Personalised recommendations