Skip to main content
Log in

Poly(ε-caprolactone) networks with tunable thermoresponsive shape memory via a facile photo-initiated thiol–ene pathway

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermoresponsive shape memory poly(ε-caprolactone) (PCL) networks with readily tunable properties are prepared exploiting the facile UV-initiated thiol–ene methodology. PCLs with multiple pendant double bonds at both chain ends are used to cross-link with multi-thiol compounds via photo-initiated thiol–ene reactions. Mechanical and shape memory properties can be altered through changes in the number of alkene side groups at the PCL chain termini and thiol cross-linker structure. In parallel with structural investigation by spectroscopic techniques, the relationships between the composition and material properties are investigated. The PCL thermoset materials exhibit excellent thermoresponsive shape memory performance by changing the operation temperature below or above the melting temperature of crystalline PCL segments, which varies in the range of 34–40 °C, and the highest shape retention and recovery ratios can reach 98–100%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Behl M, Lendlein A (2007) Shape-memory polymers. Mater Today 10:20–28

    Article  Google Scholar 

  2. Zhao Q, Qi HJ, Xie T (2015) Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog Polym Sci 49–50:79–120

    Article  Google Scholar 

  3. Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: past, present and future developments. Prog Polym Sci 49–50:3–33

    Article  Google Scholar 

  4. Liu C, Qin H, Mather PT (2007) Review of progress in shape-memory polymers. J Mater Chem 17:1543–1558

    Article  Google Scholar 

  5. Pilate F, Toncheva A, Dubois P, Raquez J-M (2016) Shape-memory polymers for multiple applications in the materials world. Eur Polym J 80:268–294

    Article  Google Scholar 

  6. Lendlein A, Sauter T (2013) Shape-memory effect in polymers. Macromol Chem Phys 214:1175–1177

    Article  Google Scholar 

  7. Behl M, Razzaq MY, Lendlein A (2010) Multifunctional shape-memory polymers. Adv Mater 22:3388–3410

    Article  Google Scholar 

  8. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer: polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256

    Article  Google Scholar 

  9. Rainbolt EA, Washington KE, Biewer MC, Stefan MC (2015) Recent developments in micellar drug carriers featuring substituted poly(ε-caprolactone)s. Polym Chem 6:2369–2381

    Article  Google Scholar 

  10. Salvekar AV, Zhou Y, Huang WM et al (2015) Shape/temperature memory phenomena in un-crosslinked poly-ɛ-caprolactone (PCL). Eur Polym J 72:282–295

    Article  Google Scholar 

  11. Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296:1673–1676

    Article  Google Scholar 

  12. Lutz A, van den Berg O, Van Damme J et al (2014) A shape-recovery polymer coating for the corrosion protection of metallic surfaces. ACS Appl Mater Interfaces 7:175–183

    Article  Google Scholar 

  13. Jorcin J-B, Scheltjens G, Van Ingelgem Y et al (2010) Investigation of the self-healing properties of shape memory polyurethane coatings with the ‘odd random phase multisine’ electrochemical impedance spectroscopy. Electrochim Acta 55:6195–6203

    Article  Google Scholar 

  14. González-García Y, Mol JMC, Muselle T et al (2011) A combined mechanical, microscopic and local electrochemical evaluation of self-healing properties of shape-memory polyurethane coatings. Electrochim Acta 56:9619–9626

    Article  Google Scholar 

  15. Nagahama K, Ueda Y, Ouchi T, Ohya Y (2009) Biodegradable shape-memory polymers exhibiting sharp thermal transitions and controlled drug release. Biomacromolecules 10:1789–1794

    Article  Google Scholar 

  16. Rivero G, Nguyen L-TT, Hillewaere XKD, Du Prez FE (2014) One-pot thermo-remendable shape memory polyurethanes. Macromolecules 47:2010–2018

    Article  Google Scholar 

  17. Nguyen L-TT, Truong TT, Nguyen HT et al (2015) Healable shape memory (thio)urethane thermosets. Polym Chem 6:3143–3154

    Article  Google Scholar 

  18. Nguyen L-TT, Nguyen HT, Truong TT (2015) Thermally mendable material based on a furyl-telechelic semicrystalline polymer and a maleimide crosslinker. J Polym Res 22:186

    Article  Google Scholar 

  19. Lendlein A, Behl M, Hiebl B, Wischke C (2010) Shape-memory polymers as a technology platform for biomedical applications. Expert Rev Med Devices 7:357–379

    Article  Google Scholar 

  20. D’hollander S, Assche GV, Mele BV, Du Prez F (2009) Novel synthetic strategy toward shape memory polyurethanes with a well-defined switching temperature. Polymer 50:4447–4454

    Article  Google Scholar 

  21. Momtaz M, Razavi-Nouri M, Barikani M (2014) Effect of block ratio and strain amplitude on thermal, structural, and shape memory properties of segmented polycaprolactone-based polyurethanes. J Mater Sci 49:7575–7584. doi:10.1007/s10853-014-8466-y.pdf

    Article  Google Scholar 

  22. Peponi L, Navarro-Baena I, Sonseca A, Gimenez E, Marcos-Fernandez A, Kenny JM (2013) Synthesis and characterization of PCL–PLLA polyurethane with shape memory behavior. Eur Polym J 49:893–903

    Article  Google Scholar 

  23. Rana S, Cho JW, Tan LP (2013) Graphene-crosslinked polyurethane block copolymer nanocomposites with enhanced mechanical, electrical, and shape memory properties. RSC Adv 3:13796–13803

    Article  Google Scholar 

  24. Berg GJ, McBride MK, Wang C, Bowman CN (2014) New directions in the chemistry of shape memory polymers. Polymer 55:5849–5872

    Article  Google Scholar 

  25. Ping P, Wang W, Chen X, Jing X (2005) Poly(ε-caprolactone) polyurethane and its shape-memory property. Biomacromolecules 6:587–592

    Article  Google Scholar 

  26. Wu X, Liu L, Fang W, Qiao C, Li T (2016) Effect of hard segment architecture on shape memory properties of polycaprolactone-based polyurethane containing azobenzene. J Mater Sci 51:2727–2738. doi:10.1007/s10853-015-9586-8

    Article  Google Scholar 

  27. Zotzmann J, Behl M, Feng Y, Lendlein A (2010) Copolymer networks based on poly(ω-pentadecalactone) and poly(ϵ-caprolactone)segments as a versatile triple-shape polymer system. Adv Funct Mater 20:3583–3594

    Article  Google Scholar 

  28. Xue L, Dai S, Li Z (2010) Biodegradable shape-memory block co-polymers for fast self-expandable stents. Biomaterials 31:8132–8140

    Article  Google Scholar 

  29. Zhu G, Xu S, Wang J, Zhang L (2006) Shape memory behaviour of radiation-crosslinked PCL/PMVS blends. Radiat Phys Chem 75:443–448

    Article  Google Scholar 

  30. Zhu GM, Xu QY, Liang GZ, Zhou HF (2005) Shape-memory behaviors of sensitizing radiation-crosslinked polycaprolactone with polyfunctional poly(ester acrylate). J Appl Polym Sci 95:634–639

    Article  Google Scholar 

  31. Zhu G, Liang G, Xu Q, Yu Q (2003) Shape-memory effects of radiation crosslinked poly(ϵ-caprolactone). J Appl Polym Sci 90:1589–1595

    Article  Google Scholar 

  32. Nagata M, Yamamoto Y (2009) Synthesis and characterization of photocrosslinked poly(ε-caprolactone)s showing shape-memory properties. J Polym Sci A Polym Chem 47:2422–2433

    Article  Google Scholar 

  33. Nagata M, Sato Y (2005) Synthesis and properties of photocurable biodegradable multiblock copolymers based on poly(ε-caprolactone) and poly(L-lactide) segments. J Polym Sci A Polym Chem 43:2426–2439

    Article  Google Scholar 

  34. Nagata M, Kitazima I (2006) Photocurable biodegradable poly(ɛ-caprolactone)/poly(ethylene glycol) multiblock copolymers showing shape-memory properties. Colloid Polym Sci 284:380–386

    Article  Google Scholar 

  35. Nagata M, Yamamoto Y (2010) Photocurable shape-memory copolymers of ε-caprolactone and L-lactide. Macromol Chem Phys 211:1826–1835

    Article  Google Scholar 

  36. Neffe AT, Hanh BD, Steuer S, Lendlein A (2009) Polymer networks combining controlled drug release, biodegradation, and shape memory capability. Adv Mater 21:3394–3398

    Article  Google Scholar 

  37. Lendlein A, Schmidt AM, Schroeter M, Langer R (2005) Shape-memory polymer networks from oligo(ϵ-caprolactone)dimethacrylates. J Polym Sci A Polym Chem 43:1369–1381

    Article  Google Scholar 

  38. Lendlein A, Schmidt AM, Langer R (2001) AB-polymer networks based on oligo(ɛ-caprolactone) segments showing shape-memory properties. Proc Natl Acad Sci USA 98:842–847

    Google Scholar 

  39. Schmidt AM (2006) Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol Rapid Commun 27:1168–1172

    Article  Google Scholar 

  40. Zhou J, Schmidt AM, Ritter H (2010) Bicomponent transparent polyester networks with shape memory effect. Macromolecules 43:939–942

    Article  Google Scholar 

  41. Garle A, Kong S, Ojha U, Budhlall BM (2012) Thermoresponsive semicrystalline poly(ε-caprolactone) networks: exploiting cross-linking with cinnamoyl moieties to design polymers with tunable shape memory. ACS Appl Mater Interfaces 4:645–657

    Article  Google Scholar 

  42. Paderni K, Pandini S, Passera S, Pilati F, Toselli M, Messori M (2012) Shape-memory polymer networks from sol–gel cross-linked alkoxysilane-terminated poly(ε-caprolactone). J Mater Sci 47:4354–4362. doi:10.3390/ma7020751

    Article  Google Scholar 

  43. Defize T, Riva RR, Raquez J-M, Dubois P, Jérôme C, Alexandre M (2011) Thermoreversibly crosslinked poly(ε-caprolactone) as recyclable shape-memory polymer network. Macromol Rapid Commun 32:1264–1269

    Article  Google Scholar 

  44. Defize T, Thomassin J-M, Alexandre M, Gilbert B, Riva R, Jérôme C (2016) Comprehensive study of the thermo-reversibility of Diels-Alder based PCL polymer networks. Polymer 84:234–242

    Article  Google Scholar 

  45. Boire TC, Gupta MK, Zachman AL et al (2015) Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications. Acta Biomater 24:53–63

    Article  Google Scholar 

  46. Basko M, Bednarek M, Vlaminck L, Kubisa P, Du Prez FE (2017) Biodegradable polymer networks via triazolinedione-crosslinking of oleyl-functionalized poly(ε-caprolactone). Eur Polym J 89:230–240

    Article  Google Scholar 

  47. Hoyle CE, Bowman CN (2010) Thiol–ene Click Chemistry. Angew Chem Int Ed 49:1540–1573

    Article  Google Scholar 

  48. Lowe AB (2010) Thiol–ene “click” reactions and recent applications in polymer and materials synthesis. Polym Chem 1:17–36

    Article  Google Scholar 

  49. Kade MJ, Burke DJ, Hawker CJ (2010) The power of thiol–ene chemistry. J Polym Sci A Polym Chem 48:743–750

    Article  Google Scholar 

  50. Yang G, Kristufek SL, Link LA, Wooley KL, Robertson ML (2015) Synthesis and physical properties of thiol–ene networks utilizing plant-derived phenolic acids. Macromolecules 48:8418–8427

    Article  Google Scholar 

  51. Nguyen L-TT, Gokmen MT, Du Prez FE (2013) Kinetic comparison of 13 homogeneous thiol-X reactions. Polym Chem 4:5527–5536

    Article  Google Scholar 

  52. Lu H, Carioscia JA, Stansbury JW, Bowman CN (2005) Investigations of step-growth thiol–ene polymerizations for novel dental restoratives. Dent Mater 21:1129–1136

    Article  Google Scholar 

  53. Machado TO, Sayer C, Araujo PHH (2017) Thiol–ene polymerisation: a promising technique to obtain novel biomaterials. Eur Polym J 86:200–215

    Article  Google Scholar 

  54. Lee KM, Knight PT, Chung T, Mather PT (2008) Polycaprolactone–POSS chemical/physical double networks. Macromolecules 41:4730–4738

    Article  Google Scholar 

  55. Rodriguez ED, Luo X, Mather PT (2011) Linear/network poly(ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH). ACS Appl Mater Interfaces 3:152–161

    Article  Google Scholar 

  56. Baker RM, Henderson JH, Mather PT (2013) Shape memory poly(ε-caprolactone)-co-poly(ethylene glycol) foams with body temperature triggering and two-way actuation. J Mater Chem B 1:4916–4920

    Article  Google Scholar 

  57. Alvarado-Tenorio B, Romo-Uribe A, Mather PT (2011) Microstructure and phase behavior of POSS/PCL shape memory nanocomposites. Macromolecules 44:5682–5692

    Article  Google Scholar 

  58. Nottelet B, Tambutet G, Bakkour Y, Coudane J (2012) Redox and thiol–ene cross-linking of mercapto poly(ε-caprolactone) for the preparation of reversible degradable elastomeric materials. Polym Chem 3:2956–2963

    Article  Google Scholar 

  59. Basko M, Bednarek M, Nguyen L-TT, Kubisa P, Du Prez F (2013) Functionalization of polyurethanes by incorporation of alkyne side-groups to oligodiols and subsequent thiolyne post-modification. Eur Polym J 49:3573–3581

    Article  Google Scholar 

  60. Lin XK, Chen L, Zhao YP, Dong ZZ (2010) Synthesis and characterization of thermoresponsive shape-memory poly(stearyl acrylate-co-acrylamide) hydrogels. J Mater Sci 45:2703–2707. doi:10.1007/s10853-010-4255-4.pdf

    Article  Google Scholar 

  61. Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41:2034–2057

    Article  Google Scholar 

  62. Liu Y, Han C, Tan H, Du X (2010) Thermal, mechanical and shape memory properties of shape memory epoxy resin. Mater Sci Eng A 527:2510–2514

    Article  Google Scholar 

  63. Hearon K, Gall K, Ware T, Maitland DJ, Bearinger JP, Wilson TS (2011) Post-polymerization crosslinked polyurethane shape memory polymers. J Appl Polym Sci 121:144–153

    Article  Google Scholar 

  64. Hoyle CE, Lee TY, Roper T (2004) Thiol–enes: chemistry of the past with promise for the future. J Polym Sci A Polym Chem 42:5301–5338

    Article  Google Scholar 

  65. Coates J (2000) In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester

    Google Scholar 

  66. Nguyen L-TT, Devroede J, Plasschaert K, Jonckheere L, Haucourt N, Du Prez FE (2013) Providing polyurethane foams with functionality: a kinetic comparison of different “click” and coupling reaction pathways. Polym Chem 4:1546–1556

    Article  Google Scholar 

  67. Derboven P, D’hooge DR, Stamenovic MM et al (2013) Kinetic modeling of radical thiol–ene chemistry for macromolecular design: importance of side reactions and diffusional limitations. Macromolecules 46:1732–1742

    Article  Google Scholar 

  68. Koo SPS, Stamenovi´c MM, Prasath RA et al (2010) Limitations of radical thiol–ene reactions for polymer–polymer conjugation. J Polym Sci A Polym Chem 48:1699–1713

    Article  Google Scholar 

  69. Billiet L, Gok O, Dove AP, Sanyal A, Nguyen L-TT, Du Prez FE (2011) Metal-free functionalization of linear polyurethanes by thiol–maleimide coupling reactions. Macromolecules 44:7874–7878

    Article  Google Scholar 

  70. Rydholm AE, Reddy SK, Anseth KS, Bowman CN (2007) Development and characterization of degradable thiol-allyl ether photopolymers. Polymer 48:4589–4600

    Article  Google Scholar 

  71. Crescenzi V, Manzini G, Calzolari G, Borri C (1972) Thermodynamics of fusion of poly-β-propiolactone and poly-ϵ-caprolactone. comparative analysis of the melting of aliphatic polylactone and polyester chains. Eur Polym J 8:449–463

    Article  Google Scholar 

  72. Hu J, Zhu Y, Huang H, Lu J (2012) Recent advances in shape–memory polymers: structure, mechanism, functionality, modeling and applications. Prog Polym Sci 37:1720–1763

    Article  Google Scholar 

  73. Xie T (2011) Recent advances in polymer shape memory. Polymer 52:4985–5000

    Article  Google Scholar 

Download references

Acknowledgements

This research was fully supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number “104.02-2015.95.” We acknowledge Vinh Truong, Tri M. Phan and Viet Q. Nguyen for their assistance to the experiments and analysis. Coenraad Schaap (Perstorp AB) and Malin Falkman (Perstorp AB) are acknowledged for advice and for supplying the polycaprolactone product. Elvira Schlatter (Bruno Bock) and Matthias Rehfeld (Bruno Bock) are acknowledged for advice and for kindly providing the tetra-functional thiol products.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le-Thu T. Nguyen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 550 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Truong, T.T., Thai, S.H., Nguyen, H.T. et al. Poly(ε-caprolactone) networks with tunable thermoresponsive shape memory via a facile photo-initiated thiol–ene pathway. J Mater Sci 53, 2236–2252 (2018). https://doi.org/10.1007/s10853-017-1643-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1643-z

Keywords

Navigation