Journal of Materials Science

, Volume 53, Issue 8, pp 5706–5718 | Cite as

Role of grain boundaries in determining strength and plastic deformation of yttria-stabilized tetragonal zirconia bicrystals

  • Ning Zhang
  • Mohsen Asle Zaeem
Interface Behavior


Mechanical properties of yttria-stabilized tetragonal zirconia (YSTZ) bicrystals under compressive loading are investigated by atomistic simulations. Previous studies on deformation of single-crystal YSTZ showed that some specific orientations promote dislocation emission, tetragonal to monoclinic phase transformation, or both. In this work, nanograins with different orientations are selectively combined to generate bicrystals with various grain boundaries (GBs). Simulation results show that regardless of orientation of nanograins, the strength of YSTZ bicrystals is higher when the GB plane is parallel to the loading direction, and in the case of [011]/\( \left[ {01\bar{1}} \right] \)-oriented YSTZ bicrystal, the strength even exceeds that of the single crystal. Independent plastic deformation of individual grains and their interactions at the GB plane are believed to be responsible for the observed increase in strength. GB plane inhibits the volume expansion of transformed monoclinic phase and therefore serves as a source of strengthening. In contrast, YSTZ bicrystal displays softer behavior when GB plane is perpendicular to the loading direction. GB plane acts as the source of softening by initiating local amorphous phase formation.



The authors are grateful for computer time allocation provided by the Extreme Science and Engineering Discovery Environment (XSEDE), award number TG-DMR140008. We are thankful to Dr. Yu Hong for his help in DFT calculations of bicrystal interface energies.


  1. 1.
    Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H, Tang C (2012) Stimulus-responsive shape memory materials: a review. Mater Des 33:577–640CrossRefGoogle Scholar
  2. 2.
    Swain M (1986) Shape memory behaviour in partially stabilized zirconia ceramics. Nature 322(6076):234–236CrossRefGoogle Scholar
  3. 3.
    Wei Z, Sandstroröm R, Miyazaki S (1998) Shape-memory materials and hybrid composites for smart systems: part I shape-memory materials. J Mater Sci 33(15):3743–3762. doi: 10.1023/A:1004692329247 CrossRefGoogle Scholar
  4. 4.
    Chevalier J, Gremillard L, Deville S (2007) Low-temperature degradation of zirconia and implications for biomedical implants. Annu Rev Mater Res 37:1–32CrossRefGoogle Scholar
  5. 5.
    Zeng XM, Lai A, Gan CL, Schuh CA (2016) Crystal orientation dependence of the stress-induced martensitic transformation in zirconia-based shape memory ceramics. Acta Mater 116:124–135CrossRefGoogle Scholar
  6. 6.
    Du Z, Zeng XM, Liu Q, Lai A, Amini S, Miserez A, Schuh CA, Gan CL (2015) Size effects and shape memory properties in ZrO2 ceramic micro-and nano-pillars. Scr Mater 101:40–43CrossRefGoogle Scholar
  7. 7.
    Zhang N, Zaeem MA (2016) Competing mechanisms between dislocation and phase transformation in plastic deformation of single crystalline yttria-stabilized tetragonal zirconia nanopillars. Acta Mater 120:337–347CrossRefGoogle Scholar
  8. 8.
    Zhang N, Asle Zaeem M (2017) Effects of specimen size and yttria concentration on mechanical properties of single crystalline yttria-stabilized tetragonal zirconia nanopillars. J Appl Phys 122(1):014302CrossRefGoogle Scholar
  9. 9.
    Zhang L, Lu C, Tieu K, Zhao X, Pei L (2015) The shear response of copper bicrystals with Σ11 symmetric and asymmetric tilt grain boundaries by molecular dynamics simulation. Nanoscale 7(16):7224–7233CrossRefGoogle Scholar
  10. 10.
    Spearot DE, Tschopp MA, Jacob KI, McDowell DL (2007) Tensile strength of < 100 > and < 110 > tilt bicrystal copper interfaces. Acta Mater 55(2):705–714CrossRefGoogle Scholar
  11. 11.
    Huang HC, Su PC, Kwak SK, Pornprasertsuk R, Yoon YJ (2014) Molecular dynamics simulation of oxygen ion diffusion in yttria stabilized zirconia single crystals and bicrystals. Fuel Cells 14(4):574–580CrossRefGoogle Scholar
  12. 12.
    Hannink RH, Kelly PM, Muddle BC (2000) Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc 83(3):461–487CrossRefGoogle Scholar
  13. 13.
    Kelly JR, Denry I (2008) Stabilized zirconia as a structural ceramic: an overview. Dent Mater 24(3):289–298CrossRefGoogle Scholar
  14. 14.
    Kelly PM, Rose LF (2002) The martensitic transformation in ceramics—its role in transformation toughening. Prog Mater Sci 47(5):463–557CrossRefGoogle Scholar
  15. 15.
    Mamivand M, Zaeem MA, El Kadiri H (2014) Phase field modeling of stress-induced tetragonal-to-monoclinic transformation in zirconia and its effect on transformation toughening. Acta Mater 64:208–219CrossRefGoogle Scholar
  16. 16.
    Mamivand M, Zaeem MA, El Kadiri H (2014) Shape memory effect and pseudoelasticity behavior in tetragonal zirconia polycrystals: a phase field study. Int J Plast 60:71–86CrossRefGoogle Scholar
  17. 17.
    Garvie R, Hannink R, Pascoe R (1975) Ceramic steel? Nature 258(5537):703–704CrossRefGoogle Scholar
  18. 18.
    Lai A, Du Z, Gan CL, Schuh CA (2013) Shape memory and superelastic ceramics at small scales. Science 341(6153):1505–1508CrossRefGoogle Scholar
  19. 19.
    Sahina O, Demirkola HG, Tuncerb M, Cetinkaraa HA, Güdera HS, Sahina E, za Tuncdemirc A (2013) Mechanical properties of nanocrystalline tetragonal zirconia stabilized with CaO, MgO and Y2O3. Acta Physica Polonica A 123:296–298CrossRefGoogle Scholar
  20. 20.
    Spearot DE, Jacob KI, McDowell DL (2005) Nucleation of dislocations from [001] bicrystal interfaces in aluminum. Acta Mater 53(13):3579–3589CrossRefGoogle Scholar
  21. 21.
    Chevalier J, Gremillard L, Virkar AV, Clarke DR (2009) The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc 92(9):1901–1920CrossRefGoogle Scholar
  22. 22.
    Basu B (2005) Toughening of yttria-stabilised tetragonal zirconia ceramics. Int Mater Rev 50(4):239–256CrossRefGoogle Scholar
  23. 23.
    Gibert-Mougel C, Couvreur F, Costantini J, Bouffard S, Levesque F, Hémon S, Paumier E, Dufour C (2001) Phase transformation of polycrystalline zirconia induced by swift heavy ion irradiation. J Nucl Mater 295(1):121–125CrossRefGoogle Scholar
  24. 24.
    Domínguez-Rodríguez A, Gómez-García D, Wakai F (2013) High temperature plasticity in yttria stabilised tetragonal zirconia polycrystals (Y-TZP). Int Mater Rev 58(7):399–417CrossRefGoogle Scholar
  25. 25.
    Du Z, Zeng XM, Liu Q, Schuh CA, Gan CL (2017) Superelasticity in micro-scale shape memory ceramic particles. Acta Mater 123:255–263CrossRefGoogle Scholar
  26. 26.
    Shibata N, Yamamoto T, Ikuhara Y, Sakuma T (2001) Structure of [110] tilt grain boundaries in zirconia bicrystals. J Electron Microsc 50(6):429–433CrossRefGoogle Scholar
  27. 27.
    Nohara Y, Tochigi E, Shibata N, Yamamoto T, Ikuhara Y (2010) Dislocation structures and strain fields in [111] low-angle tilt grain boundaries in zirconia bicrystals. J Electron Microsc 59(S1):S117–S121CrossRefGoogle Scholar
  28. 28.
    Hu W, Liu S, Zhang Y, Xiang J, Wen F, Xu B, He J, Yu D, Tian Y, Liu Z (2012) Annealing-induced {011}-specific cyclic twins in tetragonal zirconia nanoparticles. J Phys Chem C 116(39):21052–21058CrossRefGoogle Scholar
  29. 29.
    Yang Q, Tatsuoka H, Tanaka M (2014) The (011) twin structure periodical in monoclinic ZrO2 nanofiber. e-J Surf Sci Nanotechnol 12:418–419CrossRefGoogle Scholar
  30. 30.
    Zhang N, Yang S, Xiong L, Hong Y, Chen Y (2016) Nanoscale toughening mechanism of nacre tablet. J Mech Behav Biomed Mater 53:200–209CrossRefGoogle Scholar
  31. 31.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758CrossRefGoogle Scholar
  32. 32.
    Brinkman H, Briels W, Verweij H (1995) Molecular dynamics simulations of yttria-stabilized zirconia. Chem Phys Lett 247(4–6):386–390CrossRefGoogle Scholar
  33. 33.
    Schelling PK, Phillpot SR, Wolf D (2001) Mechanism of the cubic-to-tetragonal phase transition in zirconia and yttria-stabilized zirconia by molecular-dynamics simulation. J Am Ceram Soc 84(7):1609–1619CrossRefGoogle Scholar
  34. 34.
    Kilo M, Taylor M, Argirusis C, Borchardt G, Jackson R, Schulz O, Martin M, Weller M (2004) Modeling of cation diffusion in oxygen ion conductors using molecular dynamics. Solid State Ion 175(1):823–827CrossRefGoogle Scholar
  35. 35.
    Li X, Hafskjold B (1995) Molecular dynamics simulations of yttrium-stabilized zirconia. J Phys Condens Matter 7(7):1255CrossRefGoogle Scholar
  36. 36.
    Bravo-Leon A, Morikawa Y, Kawahara M, Mayo MJ (2002) Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content. Acta Mater 50(18):4555–4562CrossRefGoogle Scholar
  37. 37.
    Zapata-Solvas E, Gómez-García D, García-Gañán C, Domínguez-Rodríguez A (2007) High temperature creep behaviour of 4 mol% yttria tetragonal zirconia polycrystals (4-YTZP) with grain sizes between 0.38 and 1.15 μm. J Eur Ceram Soc 27(11):3325–3329CrossRefGoogle Scholar
  38. 38.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19CrossRefGoogle Scholar
  39. 39.
    Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695CrossRefGoogle Scholar
  40. 40.
    Verlet L (1967) Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159(1):98CrossRefGoogle Scholar
  41. 41.
    Zhang N, Deng Q, Hong Y, Xiong L, Li S, Strasberg M, Yin W, Zou Y, Taylor CR, Sawyer G (2011) Deformation mechanisms in silicon nanoparticles. J Appl Phys 109(6):063534CrossRefGoogle Scholar
  42. 42.
    Zhang N, Chen Y (2013) Nanoscale plastic deformation mechanism in single crystal aragonite. J Mater Sci 48(2):785–796. doi: 10.1007/s10853-012-6796-1 CrossRefGoogle Scholar
  43. 43.
    Zhang N, Carrez P, Shahsavari R (2017) Screw-dislocation-induced strengthening-toughening mechanisms in complex layered materials: the case study of tobermorite. ACS Appl Mater Interfaces 9(2):1496–1506CrossRefGoogle Scholar
  44. 44.
    Rohrer GS (2011) Grain boundary energy anisotropy: a review. J Mater Sci 46(18):5881. doi: 10.1007/s10853-011-5677-3 CrossRefGoogle Scholar
  45. 45.
    Yang S, Zhang N, Chen Y (2015) Concurrent atomistic–continuum simulation of polycrystalline strontium titanate. Philos Mag 95(24):2697–2716CrossRefGoogle Scholar
  46. 46.
    Zimmerman J, Kelchner C, Klein P, Hamilton J, Foiles S (2001) Surface step effects on nanoindentation. Phys Rev Lett 87(16):165507CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringMissouri University of Science and TechnologyRollaUSA

Personalised recommendations